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Abstract—The aim of this paper is to present a general machine
learning approach to the identification of nonlinear systems, using
the observed input-output finite datasets. The approach is derived
representing the input and output signals in the feature space by
the principal component analysis (PCA), thus transforming the
nonlinear time dependent identification problem to the regression
of a nonlinear input-output function. To face this problem an
effective machine learning technique based on particle-Bernstein
polynomials has been used to model the input-output relationship
that describes the system. The approach has been validated by
identifying two real world nonlinear systems, in the fields of
speech signals and nonlinear audio amplifiers.

Index Terms—Machine learning, nonlinear systems, PCA,
identification

I. INTRODUCTION

Nonlinear system identification (NSI) refers to the problem
of building a mathematical relation between input u and
output y of an unknown dynamical system [1]–[7] . A large
number of different approaches have been proposed in the
literature over the last decades to face this problem. Among
these the Lee-Shetzen method [8], [9] that identifies the
Volterra kernels of nonlinear systems stimulated by random
inputs with assigned statistics, is one of the most popular. To
overcome calculation of multidimensional Volterra kernels a
cascaded nonlinear identification model, with a static nonlinear
element followed by a time-varying element (Hammerstein
model [10]), and with a time-varying linear block followed
by a static nonlinear element (Wiener model [11]), has been
proposed. In the discrete-time domain one of the most suc-
cessful approach for nonlinear system identification is the
NARMAX model [12] (and its derivatives NARX [13] and
NARMA [14]), in which the system is modelled in terms of a
nonlinear functional expansion of lagged inputs, outputs and
prediction errors. NARMAX models have shown to be very
effective in many real-world applications [15]–[21], as they
are powerful, efficient and unified representations of a wide
variety of nonlinear systems. However a major difficulty in
system identification using NARMAX model is selecting a
model that is parsimonious in the number of parameters and
represents the dynamics of the system adequately. Even though
various methods, such as polynomials, multilayer perceptrons,
wavelet ANNs and radial basis functions, have been used to
build NARMAX models, the choice of an adequately model
remains a bottleneck.

The aim of this paper is to present a general approach to the
identification of nonlinear systems, that is based on principal
component analysis (PCA) of input and output signals. In
such a way the identification of a nonlinear input-output time-
dependent transformation reduces to the regression of a non-
linear function, so that efficient machine learning techniques
can be applied. The paper is organized as follows. Section
II describes the mathematical framework of the proposed
method. Section III reports an effective machine learning
technique for the regression of nonlinear functions, recently
suggested. Section IV presents the results of identifying some
real world nonlinear systems. Finally, Section V discusses
concluding remarks.

II. TRANSFORMING A NONLINEAR OPERATOR TO A
NONLINEAR FUNCTION

Let us refer to an input-output generally nonlinear system,
that transforms an input signal u to an output signal y, formally
represented by an operator T such that

y = T (u), u ∈ Rm, y ∈ Rn (1)

where both u = (u(1), . . . , u(n)) , y = (y(1), . . . , y(n)) are
real vectors both depending on time t = 1, . . . , n.

In this paper we will consider dynamical nonlinear systems
alone, that is the case in which the operator T acts both on
time t and magnitude of u, as the static case is not of interest.
An example of such system is the well known autoregressive
model given by

y(k + 1) = h (y(k − 1) . . . y(k − p), u(k) . . . u(k − q)) . (2)

Assuming the input u belongs to a class of random signals
with covariance matrix Ruu = E{uuT }, thus Ruu can be
decomposed as

Ruu = ψΛψT , Ruu ∈ Rm×m (3)

where ψ is an unitary matrix (ψTψ = ψψT = I)
whose columns are the eigenvectors of Ruu and Λ =
diag(λ1, . . . , λm) is the eigenvalue matrix. Due to the orthog-
onality property of ψ, the generic vector u can be written as
a linear combination of the columns of ψ

u = ψx (4)
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Fig. 1: (a) Correspondance between u, y, x and k. (b)
Schematic representation of (9).

being
x = ψTu, x ∈ Rm (5)

the vector of the coordinates on the basis ψ. (4) and (5)
represent the well-known discrete Karhunen-Loève transform
(DKLT) and its inverse, respectively [22]. Similarly, for y we
have

y = φk (6)

where φ is such that

Ryy = E{yyT } = φΓφT (7)

and Γ ∈ Rn×n is a diagonal matrix. It is worth to notice
that in the representations (4) and (6) the matrices ψ and φ
depends on time as they are composed by eigenvectors, while
x and k do not, as they represent coordinates (or features) in a
basis. This is a well known property of DKLT transform that
separates time from magnitude dependence. Combining (1),
(4) and (6) it follows that: i) T establishes a correspondences,
in general non biunivocal, between u and y; ii) ψ and φ
establish two biunivocal correspondances between u and x,
y and k respectively. As a consequence a correspondance
between x and k exists, thus formally we have:

k = f(x) (8)

where the function f(·) is in general nonlinear and indepen-
dent of time as both x and k are. Fig. 1a gives an elucidation of
the meaning of function f(x) where u, y represents the input,
output signals in time domain, while x, k in feature space. As
you can see the nonlinear operator T in time domain reduce
to a nonlinear function in feature space. This function reduces
the input u to the output y since combining (5), (6) and (8) it
results

y = φ f(ψTu) = T (u) (9)

where
T (·) = φf

(
ψT (·)

)
. (10)

A schematic representation of (9) is reported in Fig. 1b.
Assume u(i), i = 1, . . . , N are realizations of u and y(i), i =
1, . . . , N the corresponding realizations of y satisfying (1).
The estimation of the function f(·) in (8) can be viewed as a
regression problem given the training set

{ψTu(i), φT y(i), i = 1, . . . , N} (11)

which can be rewritten in matrix form as

X = UΨ, K = Y Φ (12)

where U, Y,X,K are the data matrices of u, y, x, k, respec-
tively. Finally, with this definitions in mind, the estimation of
(10) reduces to the estimation of the function (8) given the data
matrices X,K of x and k respectively. In order to reduce the
dimensionality of the problem a PCA can be used [23]. To this
end assume the eigenvalues in the matrix Λ are in descending
order, λ1 ≥ λ2 ≥ . . . ≥ λn, and the eigenvectors in ψ are in
the corresponding order. Thus ψ can be partitioned as

ψ = (ψM ψη) (13)

where the matrix ψM ∈ Rm×d contains the d most significant
eigenvectors and (4) can be rewritten according to this partition

u = ψdxM + ψηxη, xM ∈ Rd . (14)

Finally, by neglecting the residual term ψηxη corresponding
to the least significant components, u can be approximated by

u ∼= ψdxM (15)

and this yields to
xM = ψTd u (16)

where the vector xM of reduced dimension d � m is used
instead x. Having transformed the input u to the vector xM ,
the identification of nonlinear system reduces to the regression
of the function

φT y = g(xM ), xM ∈ Rd . (17)

III. REGRESSION BY PARTICLE BERNSTEIN POLYNOMIALS

Recently an effective machine learning technique based on
a set of new functions named particle-Bernstein polynomi-
als (PBP) has been proposed for regression of input-output
relationships [24]. Bernstein polynomials have the property
that the coefficients are the values of the function to be
approximated at points in a fixed grid, thus avoiding a time-
consuming training stage. Thus this approach can fruitfully
be used for solving the regression of function f(·) in (17).
Following this method the estimate fm(z) of f(·) at the
generic testing point z is given by

f(z) ∼= fm(z) =

N∑
j=1

f(x(i))kmξ (x(j))

N∑
j=1

kmξ (x(j))

, (18)
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where the set {x(j), f(x(j)), j = 1, . . . , N} represents the
training set that can be derived from the input-output set
{u(i), y(i), i = . . . , N} through (12), and xt, ξt, t = 1, . . . , d
are the coordinates of vectors x = (x1, . . . , xd) and ξ =
z/m = (ξ1, . . . , ξd) respectively. In (18) kmξ is a polynomial
of degree m defined as

kmξ =
d∏
t=1

xξtt (1− xt)m−ξt . (19)

IV. EXPERIMENTAL RESULTS

A. Validation of particle Bernstein polynomials approach for
regression of nonlinear functions

The first experiment is addressed to the validation of particle
Bernstein polynomials approach for the regression of a nonlin-
ear function given an input-output data set. To this end let us
refer to the problem of reconstructing a speech signal from the
Mel-cepstral analysis, that is a central issue in the synthesis
of speech [25], [26]. It is well known that the Mel filter bank
defines a non invertible linear transform, so that reconstruction
of speech signal is not guaranteed. In this experiment it
will be shown that a nonlinear inverse transformation can
be derived provided that some information on signal phase
is used as input data. The experiment has been carried out
on a speech signal extracted from an audio recording of a
female Italian speaker. The signal of length 5800000 samples
has been divided into a set of N = 72500 (N = 47838
without silence periods) frames of length n = 200 samples
with an overlap of 120 samples. From the spectrum of each
frame 13 MFCC coefficients c(j), j = 1, . . . , 13 and 24 phase
values ϕ(j), j = 1, . . . , 24 at the center frequencies of Mel
filter banks have been derived. In order to reduce the input
dimensionality only l < 24 phase components are taken into
account, so that the input vector u is defined as

u = (c(1), . . . c(13), ϕ(1), . . . ϕ(l))
T

. (20)

Thus a frame for testing is extracted from data set while the
remaining frames are used for training the model (18). Fig. 2a
compares the results achieved by PBP regression model (18)
with data, for a polynomial order m = 25 and l = 6 phase
components. Fig. 2b depicts the results achieved with l = 10
and m = 15, with reference to the same frame of Fig. 2a.
PBPs do not require any time-consuming training phase, as
only direct samples of the training set are used.

B. Identification of a vacuum tube audio amplifier

The second experiment refers to nonlinear audio system
identification [5], [27] and aims at identifying the input-output
dynamic nonlinear characteristic that is typical of vacuum
tube audio amplifiers (VTAAs). To this end, a SPICE-level
electrical simulation of a Fender Bandmaster 5E7 amplifier
was perfomed to obtain input/output signal pairs. The circuit
simulated is shown in Fig. 3. It is composed of two major
stages: the input stage, which is essentially linear but presents
an adjustable and strongly frequency-dependent gain, used for
tone control, and the output power stage, which exhibits the
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Fig. 2: Particle Bernstein: output y as a function of a discrete-
time t. (a) features = 19, order = 25, ttest = 0.029771 s; (b)
features = 23, order = 15, ttest = 0.034319 s.
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Fig. 3: Circuit diagram of the Fender Bandmaster 5E7 tube
amplifier (restricted to a single channel) used for simulation.

VTAA typical soft-clipping and amplitude-dependent gain, as
shown in Fig. 4. Clearly this is a time dependent nonlinearity
as the input-output characteristic is strongly dependent on
the input magnitude. For this experiment, a speech signal
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Fig. 4: Dynamic nonlinear behaviour of the Fender Bandmas-
ter 5E7 tube amplifier: output voltage as a function of the grid
voltage of tube U5 (node 19), for different amplitudes of the
input signal (1 kHz sinusoid), showing decreasing gains as the
VTAA enters its soft-clipping region.
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Fig. 5: A frame of the input/output signals - (a) time domain,
(b) frequency domain.

extracted from an audiobook was used, at an amplitude of
400 mV. Fig. 5 shows a frame of the input/output signals used
in the experiment and their spectra. Fig. 6 compares an output
frame, extracted from training set, with the frame predicted
by PBP regression model, in the time domain and frequency
domain. Instead Fig. 7 compares an output frame, extracted
from testing set (i.e. data not included in training set) with
the frame achieved by the model (18), in the time domain and
frequency domain, thus confirming (18) is able to satisfactorily
model data lie outside the training set.

V. CONCLUSION

One of the main issues in system identification using current
approaches is selecting a model that represents the dynamics
of the system adequately and requires a reduced number
of parameters. The approach presented in this paper does
not require a suitable model to represent input-output data.
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Fig. 6: Particle Bernstein (features = 10, order = 100), model
validation - (a) time domain: output y as a function of a
discrete-time t; ttest = 0.037450 s, (b) frequency domain.
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Fig. 7: Particle Bernstein (features = 10, order = 100) - (a)
time domain: output y as a function of a discrete-time t; ttest =
0.034963 s, (b) frequency domain.

Instead on the basis of PCA representation of input and output
signals reduces to a nonlinear input-output static function. In
this way it has been shown that using an effective machine
learning technique, based on particle-Bernstein polynomials,
the approach is able to identify real-world nonlinear dynamical
systems.
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