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Abstract—In several areas of imaging, it is necessary to detect
the weak signal of a known pattern superimposed over a back-
ground. Because of its temporal fluctuations, the background may
be difficult to suppress. Detection of the pattern then requires a
statistical modeling of the background. Due to difficulties related
to (i) the estimation of the spatial correlations of the background,
and (ii) the application of an optimal detector that accounts for
these correlations, it is common practice to neglect them.

In this work, spatial correlations at the scale of an image
patch are locally estimated based on several background images.
A fast algorithm for the computation of detection maps is derived.
The proposed approach is evaluated on images obtained from a
holographic microscope.

Index Terms—matched filter, patch, shrinkage covariance es-
timator, correlation

I. INTRODUCTION

The detection of a faint pattern modeled by a few pa-
rameters is a common image processing task encountered in
many fields (microscopy, astronomy, radar imaging, etc.). In
particular, in holographic microscopy, small spherical objects
such as cocci bacteria, bubbles or droplets can be imaged
by recording the diffraction patterns they produce under a
coherent illumination. The resulting image, called a hologram,
can be modeled by Fourier optics or Mie scattering theory. The
diffraction pattern produced by each object depends only on
a few parameters (3D object location and size) [1]. Hologram
reconstruction requires the detection and localization of each
diffraction pattern in the data. In astronomy, the detection and
accurate localization of very faint sources is crucial to detect
exoplanets or to study the gravitational interaction of stars in
the vicinity of the central black hole of our galaxy [2].

These detection and localization tasks become very difficult
when the amplitude of the pattern of interest is small compared
to the background fluctuations and under the presence of
nonstationary and correlated background structures.

Our contributions: We derive an algorithm for the detec-
tion of a shift-invariant pattern in an image. This algorithm
accounts for the local correlations of the background. It uses
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a parameter-free shrinkage covariance estimator for local patch
covariance modeling. Computation of a detection map by
direct application of the generalized likelihood ratio test has
a prohibitive computational complexity when the pattern is
spatially extended. An efficient algorithm based on fast Fourier
transforms is derived to approximate the detection map.

II. STATISTICAL MODELING OF THE BACKGROUND

We focus on the case where several images of the back-
ground are recorded, in the absence of the objects of interest,
before performing the detection tasks. Because of the temporal
fluctuations of the background, subtracting an average back-
ground or even a linear combination of the background images
is not sufficient to efficiently remove the background from the
image: spatially-structured residuals remain and degrade the
detection performance.

To overcome this limitation, a statistical modeling of the
background fluctuations can be built in order to better decide
at detection time which part of the signal may be ascribed to
the pattern to detect and which is more likely due to a typical
temporal fluctuation of the background.

Background fluctuations are generally nonstationary and
spatially correlated. Capturing those fluctuations at the scale of
an N -pixels image from only a few tens up to a few hundreds
of background images is very difficult: the covariance matrix
has O(N2) terms (O(·) corresponds to Bachmann–Landau
asymptotic notation). Either some structure has to be assumed
for the covariance matrix or a more local modeling is neces-
sary.

In the domain of statistical modeling of natural images,
patches (i.e. small windows of a few pixels wide) have
emerged as an adequate scale at which spatial correlations
can be captured. A multivariate Gaussian modeling of stacks
of similar patches is used in NL-Bayes algorithm [3] in order
to estimate denoised images. In the EPLL (Expected Patch
Log Likelihood) model [4], the statistics of natural images is
captured as a product of Gaussian mixture models defined over
each patch that can be extracted from the image. There are
numerous other works that base the modeling of images on a
decomposition into image patches, from non-local approaches
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Fig. 1. Illustration of the local model for background patches: (a) sample 11×
11 patches from experimental backgrounds, extracted at 2 different locations;
(b) patches generated from the multivariate Gaussian model locally learned
from 60 background samples.

[5], fields of experts [6], higher-order Markov random fields
[7], patch dictionaries [8], up to the recent generalized use
of convolutional neural networks that learn a model based on
an input patch (whose size depends on the so-called receptive
field, i.e., the depth and structure of the network).

In the context of exoplanet detection by direct imaging [2], a
weak point-like source has to be detected over a spatially struc-
tured background (the host star is only imperfectly masked out
by a coronagraph, which causes this undesirable background).
We have recently proposed an exoplanet detection algorithm,
called PACO [9], [10], based on a local modeling of the PAtch
COvariances. In this paper, we follow the same statistical
modeling and consider the adaptation of the method to the
detection of spatially Extended patterns (ExPACO).

The background component b ∈ RN is decomposed into
patches. The patch bi ∈ RK extracted around pixel i is
modeled by a multivariate Gaussian: bi ∼ N (µi,Ci), where
both the mean µi and the covariance matrix Ci are estimated
locally from the set of background images. µi is estimated by
the sample mean: µ̂i =

1
T

∑T
t=1 bi,t, where the notation bi,t

indicates the K-pixels patch centered at pixel i, in the t-th
background image. To estimate the covariance matrix of size
K × K from T background images, the sample covariance
matrix Ŝi =

1
T

∑T
t=1(bi,t− µ̂i)(bi,t− µ̂i)t can be used when

T � K. When T ≈ K, Ŝi has a large variance and when
T < K, Ŝi becomes rank-deficient. Ledoit and Wolf [11] and
Chen et al. [12] improve the sample covariance matrix by
shrinkage towards a matrix proportional to the identity. In [9],
we extend the formula defining the shrinkage estimator as the
convex combination of Ŝi and a diagonal covariance matrix
D̂i defined by [D̂i]m,n = 0 if m 6= n and [D̂i]m,m = [Ŝi]m,m:

Ĉi = ρ̂iD̂i + (1− ρ̂i)Ŝi , (1)

where the shrinkage coefficient ρ̂i is obtained by clipping to
the [0, 1] range the value:

ρ̂i =
Tr(Ŝ2

i ) + Tr2(Ŝi)− 2
∑K
k=1[Ŝi]

2
kk

(T + 1)(Tr(Ŝ2
i )−

∑K
k=1[Ŝi]

2
kk)

. (2)

Figure 1(a) shows some patches extracted at different lo-
cations of background images acquired with a holographic
microscope (see section V and Fig.2 for details). In Figure
1(b), some random realizations drawn according to the lo-
cal Gaussian model N (µ̂i, Ĉi) learned from 60 background

patches are displayed. Patches from two different locations
i1 and i2 are shown on two different rows. Fluctuations
around the mean background differ according to the location.
Generated patches are quite similar to the patches extracted
from the background images at the corresponding location.

III. DETECTION OF AN EXTENDED PATTERN

The joint detection / localization problem of a pattern
m(x0, y0) centered at the 2D location (x0, y0) in an observed
image f corrupted by a background b can be formulated as a
binary hypothesis test:{

H0 : f = b ,

H1 : f = b+ αm(x0, y0) with α > 0 .
(3)

The estimation of the 2D location (x0, y0) of the pattern and
of its amplitude α is necessary in order to decide between
the two hypotheses. The neg-log-likelihood of parameters α,
x0 and y0 under H1, with our patch-based modeling and an
independence assumption between patch, is:

− log p(f |H1, α, x0, y0) =
1
2

∑
i r

t
iC
−1
i ri + c, (4)

where the residual patch ri is obtained by removing the
average background µi and the contribution of the pattern mi

to the observed patch f i: ri = f i − µi − αmi(x0, y0), and
where c is a constant that depends only on the sum of the log
of the covariance determinants.

At a given location (x0, y0), the maximum likelihood esti-
mate of the amplitude of the pattern is given by:

α̂(x0, y0) =
max(b(x0, y0), 0)

a(x0, y0)
=

[b(x0, y0)]+
a(x0, y0)

, (5)

with

{
a(x0, y0) =

∑
imi(x0, y0)

tĈ−1i mi(x0, y0)

b(x0, y0) =
∑
i(f i − µ̂i)tĈ−1i mi(x0, y0) .

To decide in favor of hypothesis H0 or H1, for a fixed
location (x0, y0), the generalized likelihood test (GLRT) is:

log
p(f |H1, α̂, x0, y0)

p(f |H0)
=

[b(x0, y0)]
2
+

a(x0, y0)

H1

≷
H0

η ,

which can be recast for η ≥ 0 as a test on the signal-to-noise
ratio of pattern m (SNRT), which follows N (0, 1) under H0,
see [9]:

α̂(x0, y0)

σα(x0,y0)
=

b(x0, y0)√
a(x0, y0)

H1

≷
H0

√
η = τ . (6)

The maximum likelihood location of the pattern is obtained
by maximization of the SNRT over all possible locations.

So far, in our modeling only a single pattern has been
considered. If several patterns are superimposed, each centered
on a different 2D location, a greedy approach similar to the
matching pursuit can be applied: patterns are detected one at
a time by forming the SNRT, and after each detection the
detected pattern is subtracted from the data so that the next
pattern can be detected by applying the SNRT on the residuals.
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IV. EXPACO: FAST COMPUTATION OF DETECTION MAPS

Localization of a pattern requires to maximize the SNRT.
Since the SNRT is a non-convex function of the 2D location
(x0, y0), with many local maxima observed in practice, it is
necessary to systematically evaluate the SNRT over a grid to
identify the global maximum. If the pattern1 m is extended,
patches mi extracted from the reference pattern are all non-
zero and the sums in equation (6) involve N terms if patches
overlap, or N/K if patches do not overlap. In the following
discussion, we consider that patches overlap.

Evaluating the SNRT defined in equation (6) for a given
location requires O(NK2) scalar operations if the inverse
matrices Ĉ−1i are precomputed (which requires O(NK3)
operations). Therefore, to produce a SNRT map, i.e. to com-
pute the SNRT for N locations (x0, y0) spanning the whole
pixel grid, O(N2K2) operations are required2. This high
computational complexity prevents a direct application of the
SNRT based on the background modeling described in section
II with patch covariances.

In this paper, we propose a fast algorithm to compute SNRT
detection maps in the case of shift-invariant models m. The
algorithm is based on a reformulation of (6) that involves
discrete correlations. These correlations are computed using
fast Fourier transforms. We describe in turn how the numerator
and the denominator of (6) can be efficiently computed.

A. Fast computation of b(x0, y0) for all pixel shifts:

When the model is shifted, restrictions of the model to each
patch mi are modified while patches ui ≡ Ĉ−1i (f i − µ̂i)
remain unchanged. Let U =

(
u1 · · · uN

)
be the K ×N

matrix collecting all transformed patches ui. By application
of a singular value decomposition (SVD), matrix U can be
decomposed into a sum of K rank-one matrices:

U =
∑K

k=1
vkβ

t
k , (7)

where {vk}k=1..K are the left singular vectors (i.e. modes)
and [βk]i is the coefficient of each patch ui related to mode
vk (obtained as the product of the k-th singular value and of
the i-th entry of the k-th right singular vector).

The computation of scalar productsmt
ivk for all the patches

mi that can be extracted from model m is readily obtained
by a 2D correlation3: mt

ivk = [m ? vk]i , where the notation
? denotes a 2D discrete correlation.

Since the transformed patch ui can be expanded as ui =∑K
k=1[βk]i vk, we obtain that ut

imi = mt
i

∑K
k=1[βk]i vk =∑K

k=1[βk]im
t
ivk =

∑K
k=1[βk]i[m ? vk]i. Translating the

1for compactness, we drop in this paragraph the spatial location (x0, y0)
in the notation m(x0, y0)

2since the number K of pixels in a patch is much smaller than the total
number N of pixels in an image, precomputing the inverse of covariance
matrices in O(NK3) is negligible compared to producing the map in
O(N2K2) and is K-fold improvement compared to inverting linear systems
at each location, which would lead to a total complexity of O(N2K3).

3in the 2D correlation, m has the size of an image while vk has the size
of a patch, the resulting correlation at a pixel i thus involves only the patches
mi and vk

model m leaves the weights βk unchanged (they depend only
on the ui) but shifts the term m ? vk. When computing the
sum over all positions i of the product [βk]i[m ? vk]i for all
shifts, a correlation is performed:

b(x0, y0) =
∑K

k=1
[βk ? (m(0, 0) ? vk)]x0,y0

. (8)

With this formulation, the computational complexity is re-
duced to that of the computation of the vectors ui (O(NK2)
operations if matrix inverses are precomputed), of the SVD of
a N × K matrix (O(NK2) operations) and of 2K discrete
correlations (that can be computed with FFTs in O(N logN)
each). The total complexity (including the precomputation of
matrix inverses) is then O(NK(K2+logN)), which is much
better than the original complexity: O(N2K2).

B. Fast computation of a(x0, y0) for all pixel shifts:

Computation of this term is more challenging because the
mi terms are shifted with respect to the location of the
covariance matrices Ĉi. It is not possible to derive a linear
expansion and identify discrete correlations. We resort to an
approximation in order to compute efficiently this term for all
shifts.

Let M be the K × N matrix that collects all
patches extracted from the centered model m(0, 0): M =(
m1(0, 0) · · · mN (0, 0)

)
. To reduce the complexity, we

approximate each patch mi by a scaled version of an element
taken from a K × P codebook W:

M ≈

 | |
w1 · · · wP

| |

Qt (9)

where the code Q is a N × P matrix such that for all row,
only a single entry is non-zero. If q(i) is the value of the non-
zero entry of the i-th row of Q and p(i) is the column number
corresponding to that entry, then the patch mi is approximated
by q(i)wp(i).

Construction of the codebook can be performed using a
modified version of the k-means clustering algorithm where
distances to cluster centers are evaluated by normalized cor-
relation and the update of a cluster center corresponds to a
truncated SVD where only the left and right singular vectors
corresponding to the largest singular value are kept. This
corresponds to a particular case of K-SVD sparse coding
algorithm [8] where the sparsity is equal to 1. Note that the
approximation can be made exact by setting P = N , but in
practice P will be chosen to be several orders of magnitude
smaller than N .

Next, we build P maps e1 to eP such that [ek]i =
wt
kĈ
−1
i wk. The k-th column qk of the code Q indicates

which vectors mi are best represented by wk. If we replace
each vectormi in the sum

∑
im

t
iĈ
−1
i mi by its closest vector

in the codebook, we obtain the approximation:∑N

i=1
mt
iĈ
−1
i mi ≈

∑P

k=1
(q2k)

tek , (10)

where the square is applied element-wise on the vector qk.
When the model m is shifted, the maps qk indicating the
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Fig. 2. (a) our holographic microscope; (b) some difference of background
images; (c) example of a diffraction pattern to be detected in the image; (d)
a hologram of a polystyrene microscopic bead of 2.1 microns radius.

location of patches mi best represented by wk are shifted
accordingly. Values of the denominator of the SNRT for any
pixel shift of the model can then be obtained by discrete
correlations:

a(x0, y0) ≈
[∑P

k=1
qk ? ek

]
x0,y0

. (11)

The complexity of the procedure is the following: application
of the k-means algorithm for a fixed number of iterations is
performed in O(PN), computation of the maps {ek}k=1..P

requires O(PNK2) operations, computation of the P corre-
lations is performed in O(PN logN) with FFTs. The total
complexity is thus O(PN(logN + K2)). This corresponds
to a strong improvement compared to the original complexity
(in O(N2K2)) if we choose a codebook size P � N . Once
the (approximate) location of the pattern has been identified,
a local optimization based on the exact evaluation of (6) can
be performed (i.e. no bias is incurred, only the location of the
pattern may be missed if the approximation is too coarse and
the local optimization then leads to the wrong local optimum).

V. RESULTS

In this section, we assess both the accuracy and the detection
performance of ExPACO. For this purpose, we use exper-
imental background images recorded with the holographic
microscope presented in Fig.2(a). Difference of 4 background
images out of the 61 that we collected are shown in Fig.2(b).
Fluctuations in the background are due to small variations of
the optical path lengths between optical surfaces (because of
mechanical vibrations or thermal inhomogeneities of the air)
and are difficult to fully model. The diffraction pattern created
by a spherical bead is displayed in Fig.2(c-d). The bead size
and the refractive index contrast between the bead and the
surrounding medium (approximately 0.08 here) is sufficient
to obtain quite contrasted diffraction fringes. Identification
of the diffraction pattern becomes critical when this index
contrast or the object size drops. To evaluate the performance
of ExPACO, we added a model of the diffraction pattern
created by a microscopic bead to some background images, the
other background images were kept to estimate the background
statistics µ̂i and Ĉi.

Fig. 3. Evolution of the relative error induced by our fast approximation as a
function of the number P of atoms in the codebook W and of the number T
of background images available to estimate {µ̂i}i=1..N and {Ĉi}i=1..N .

Fig.3 evaluates the accuracy of the approximation presented
in section IV to compute efficiently SNR maps. Square patches
of size 7×7 are used. Since the evaluation of the SNR by direct
application of equation (6) has a prohibitive complexity, we
compare values of the SNR on only 2000 different locations
(x0, y0). Application of (6) takes 12 hours to compute these
2000 locations on 20 CPU cores, while our fast approximation
produces the SNR map for one million different locations in
about 2 minutes (computation of the codebook which must be
done only once for a given patternm takes another 2 minutes).
As expected, Fig.3 shows a reduction of the approximation
error of the SNR when the size of the codebook P increases
(blue curve). With P ≈ 200 elements, the codebook W is
large enough to capture most of the geometrical structures of
the pattern and to obtain an approximation error below 5%.

The impact of the number of background images in the
estimation of the background statistics (µ̂i and Ĉi) is assessed
by comparing values of the SNR obtained when µ̂i and Ĉi

are estimated from an increasing number of backgrounds (the
reference SNR is obtained when 60 backgrounds are used).
With 7×7 patches, covariance matrices are 49×49. With less
than 50 background samples, the obtained SNR map differs
significantly from the SNR map obtained with all backgrounds.

In the following experiments, we set T = 60, P = 1024,
and add pattern with a very low amplitude on the remain-
ing 61st background image. As a baseline, we consider a
background model with a diagonal covariance matrix: this
corresponds to setting ρ̂i = 0 for all i in equation (2). Only the
structures that are in the mean background µ are taken into
account in this baseline method, denoted diagonal covariance
in the following.

In Fig.4, we compare SNR maps obtained with a diagonal
covariance and with ExPACO for the 4 different patch shapes
shown at the top of the figure. Each of the patches has 25
pixels: the first patch is a 5 × 5 full patch, the remaining 3
patches are patches with holes: a 19 × 19 patch, a 29 × 29
patch and a 39×39 patch. The rationale in increasing the size
of the patch while keeping the same number of pixels is to
capture longer-range correlations without increasing the size
of the covariance matrices Ci. In each SNR map, a single
peak is expected at the location circled in pink, corresponding
to the position (x0, y0) of the pattern that has been added
to the background image (contrast between the background
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Fig. 4. Detection of a pattern in a structured background: diagonal covariance
vs ExPACO with various patch shapes.

Fig. 5. ROC curves of the diagonal covariance detector and of ExPACO for
various patch sizes and patch shapes. The inset shows an unzoomed to better
locate the diagonal covariance detector with respect to ExPACO.

and the pattern is about 140). This peak is visible only
with ExPACO. Moreover, with more extended patches, the
SNR displays much fewer undesirable fluctuations: typical
background structures are better modeled and are thus less
likely to be mistaken for the pattern.

The influence of the patch size and of the number of pixels
within a patch is more systematically studied through receiver
operating curves (ROC) curves. Patterns are injected one at
a time, at different locations, on various backgrounds. Fig.5
reports the evolution of the ROC curve with the number of
pixels K in the patch and with the spatial extent K̃ of the
patch. A clear improvement is observed with respect to a
detector based on a diagonal covariance assumption. The de-
tection performance of ExPACO improves when larger patches
and more pixels are taken into account, since this allows to
capture longer-range correlations. In these simulations where
the pattern is 140 times fainter than the background, using
K = 25 pixels spread over areas of 19 × 19 to 39 × 39
pixels leads to the detection of 100% of the patterns without
false alarms. In contrast, the diagonal covariance detector
reaches only 15% of detections without false alarms. The
number of pixels K and the spatial extension K̃ should not
be too large: a large K leads to a large covariance matrix
which can not be accurately estimated from a limited number
of background images (the shrinkage step strongly bias the
covariance towards a diagonal covariance matrix if K � T );
if K̃ is too large, shorter-range correlations are lost and the

Fig. 6. False alarm rates, for two different thresholds.

model is less local (hence less adapted to highly nonstationary
backgrounds). We found in our experiments that the choices
K ≥ 110 (pixels) ' 2T and K̃ ≥ 50 (patch width in pixels)
both lead to a degradation of ExPACO performance.

A desirable property for detectors is to lead to a constant
false alarm rate. In the case of nonstationary backgrounds, this
requires a robustness to the differences in the structures found
in the background. Fig.6 shows maps of the false alarm rate
reached by the diagonal covariance estimator and by ExPACO.
These maps were built by reporting the fraction of positive
SNR tests in the absence of patterns (i.e. under H0), for
different background images (1 background is selected and
the 60 remaining are used to estimate the µ̂i and Ĉi, in a
leave-one-out rotation). Contrary to the diagonal covariance
detector, the false alarm rate of ExPACO is stationary.

VI. CONCLUSION

We introduced ExPACO, a fast algorithm to detect extended
patterns in nonstationary and correlated backgrounds. A local
model of the spatial correlations is learned from a few tens
of background images. By accounting for these correlations,
the detection performance is improved compared to a standard
detector. Patches with holes are shown to lead to a good trade-
off between the size of the covariance matrices to estimate and
the range of the correlations that are captured.
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