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Abstract—The paper discusses a measurement method for
the room impulse response (RIR) which is robust towards the
nonlinearities affecting the power amplifier or the loudspeaker
used in the measurement. In the proposed approach, the mea-
surement system is modeled with a Volterra filter. The first order
kernel of the Volterra filter, i.e., the linear part, is efficiently
determined using orthogonal periodic sequences (OPSs) and the
cross-correlation method. The approach shares many similarities
with RIR measurements based on perfect periodic sequences
(PPSs). In contrast to PPSs, the proposed approach is able
to directly measure the impulse response for small signals of
the measurement system. Moreover, the input signal can be
any periodic persistently exciting sequence and can also be a
quantized sequence. Measurements performed on an emulated
scenario compare the proposed approach with other competing
RIR measurement methods.

I. INTRODUCTION

The knowledge of the room impulse response (RIR) is a key
issue in acoustic and audio signal processing. It can be used for
analyzing and characterizing the acoustic response of a room,
estimating parameters like reverberation time, early decay
time, clarity, definition, interaural cross-correlation, lateral
energy fraction, etc. [1]. It is also used in the first step of
many audio applications, like room response equalization [2],
spatial audio rendering [3], virtual sound [4], room geometry
inference [5], and others.

In the literature many different approaches for measuring
the RIR can be found: from the use of impulsive signals and
time stretched pulses, to maximal length sequences (MLSs)
[6], perfect periodic sequences (PPSs) for linear systems [7],
linear sweeps, exponential sweeps (ESs) [8, 9], perfect sweeps
[10], and many others.

The nonlinearities present in the measurement chain can
severely affect the performance of many of these approaches.
While the acoustic path can be considered as a linear system,
the volume used to guarantee a high SNR of the used measure-
ment signal versus noise floor often causes the appearance of
nonlinear effects in the power amplifier or in the loudspeaker
of the measurement system.

These nonlinear effects are often the cause of artifacts in
the obtained response, such as the spikes in the measured RIR
using MLSs approach [11]. ESs [8, 9] and synchronized ESs
[12] are often used to counteract the effect of measurement

system nonlinearities. Indeed, these techniques can be made
immune to nonlinearities, provided that the measurement sys-
tem can be modeled as a memoryless nonlinearity followed by
a linear filter, i.e., as a Hammerstein filter [13]. Unfortunately,
for nonlinearities with memory, also the measurement with
ES technique is affected by artifacts caused by nonlinear
distortions [14, 15].

An approach for RIR estimation opposing the effect of
nonlinearities was proposed in [16, 17], where the entire
measurement chain (power amplifier, loudspeaker, acoustic
path and microphone) is modeled as a Legendre nonlinear
(LN) filter. These filters are linear combinations of polynomial
basis functions orthogonal for white uniform inputs [18] that
admit PPSs, i.e., periodic sequences that guarantee the perfect
orthogonality of the basis functions over a sequence period.
Using a PPS input, the coefficients of the LN filter can be
estimated computing the cross-correlation between the system
output and the basis functions. In [16, 17], the RIR is estimated
extracting with PPSs the first-order kernel (the set of linear
term coefficients) of the LN filter modelling the measurement
chain. In [19] this approach was extended to Wiener nonlinear
(WN) filters, polynomial filters with orthogonal basis functions
for white Gaussian inputs, which derive from the truncation
of the Wiener nonlinear series.

PPSs are obtained by imposing the orthogonality of the basis
functions and solving a system of nonlinear equations with
an iterative approach. In [20], a novel family of sequences
called orthogonal periodic sequences (OPSs) is introduced.
Their main purpose, as for the PPSs, is the identification
of functional link polynomial (FLiP) filters, a filter class
that includes LN, WN, Volterra, and many other filters. As
the PPSs, they allow the perfect estimation of a FLiP filter
on a finite time interval with the cross-correlation method.
In contrast to PPSs, OPSs can identify also non-orthogonal
FLiP filters, as the Volterra filters. With OPSs, the input
sequence does not need to be perfect periodic, it can have any
distribution, and can also be a quantized sequence. OPSs can
be derived solving linear systems and can often identify FLiP
filters with a sequence period and a computational complexity
much smaller than that of PPSs.

In this paper we propose a methodology to estimate the RIR,
robust towards the nonlinearities affecting the measurement
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chain, using OPSs. In contrast to PPS and exponential sweeps
[13], OPSs allow the direct estimate of the first order kernel of
the Volterra model, i.e., of the measurement system impulse
response for small signals. In Section II, the Volterra filter,
used as model of the measurement chain, is presented. It will
be identified using a cross-correlation method based on OPS.
The RIR estimation methodology is presented in Section III,
while experimental results are shown in Section IV. Finally,
conclusion is reported in Section V.

II. VOLTERRA FILTERS AND OPSS

In the proposed approach the measurement system is mod-
eled as a discrete-time Volterra filter. Volterra filters derive
from the double truncation, with respect to order and mem-
ory, of the Volterra series [21]. They can arbitrarily well
approximate any discrete-time, time invariant, finite memory,
continuous nonlinear system. In triangular form, the discrete
time Volterra filter, of order K, memory N , has the following
input-output relationship:

y(n) = h0 +
K∑
r=1

N−1∑
n1

N−1∑
n2=n1

. . .
N−1∑

nr=nr−1

hr,n1,...nr ·

· x(n− n1)x(n− n2)...x(n− nr). (1)
Volterra filters are linear combinations of basis functions. Each
basis function is a product of delayed input samples and can
be written in the following form

x(n− n1)x(n− n2) . . . x(n− nr), (2)
where without loss of generality 0 ≤ n1 ≤ n2 ≤ . . . < nr,
and r ∈ N. The order of the basis function is r, and its
“diagonal number” is, by definition, the maximum time differ-
ence between the involved input samples, i.e., nr − n1. Since
natural systems typically have the most relevant coefficients
in correspondence to low diagonal numbers, the maximum
diagonal number is often conveniently limited. A Volterra filter
of order K, memory N , diagonal number D, is the linear
combination of all basis functions in (2) with nr ≤ N − 1, of
order up to K, and diagonal number up to D.

By properly arranging the basis function according to the
so-called diagonal representation [22], Volterra filters can be
implemented in the form of a filter bank as follows:

y(n) =
R−1∑
p=0

Np−1∑
m=0

hp(m)fp(n−m), (3)

where fp(m) are the zero-lag basis functions: f0(n) = 1,
f1(n) = x(n), and all other basis functions are products of
delayed input samples with x(n) as a factor, e.g., f2(n) =
x2(n), f3(n) = x(n)x(n−1), ...; R is the number of zero-lag
basis functions; Np is the memory length of the basis function
fp(n), which is N minus the diagonal number of fp(n).

We are interested in measuring the first order kernel of
the Volterra filter, i.e., h1(j) for j = 0, ..., N − 1, using
OPSs and the cross-correlation method. Let us consider any
persistently exciting periodic input sequence x(n) of period
L. The sequence is assumed persistently exciting to guarantee
the invertibility of the input data matrix introduced in the
following. The condition is satisfied when the samples of x(n)

have, for example, a white Gaussian, a white uniform, or a pink
noise distribution. The sequence x(n) could also be quantized.

Given the periodic input sequence x(n), we want to obtain
the corresponding OPS z(n) of period L, suitable for the first
order kernel estimation, such that

h1(j) =< y(n)z(n− j) >L, (4)

for all j = 0, .., N − 1, where < a(n) >L is the sum of a(n)
over a period of L consecutive samples. Thus, the OPS allows
the estimation of h1 simply computing the cross-correlation
between the system output y(n) and z(n).

Inserting (3) in (4), it can be proved that the OPS z(n) must
satisfy the linear equation system

< z(n) >L = 0, (5)
< x(n)z(n) >L = 1, (6)

< x(n− u)z(n) >L = 0, (7)
< fp(n− v)z(n) >L = 0, (8)

for all −(N − 1) < u ≤ N − 1 with u 6= 0, −(N − 1) <
v ≤ Np − 1, and 2 ≤ p ≤ R. The system in (5)–(8) has Q
equations and L variables (the samples of z(n)), with

Q = ND + (R− 1)(N − 1), (9)

where R =
(
D+K
D+1

)
+ 1, and total number of coefficients ND

is given by ND =
(
D+K+1
D+1

)
+
(
D+K
D+1

)
(N − 1−D) [23].

For L > Q, if the input is persistently exciting the linear
system always admits a solution. The system can be written
in matrix form,

Sz = d, (10)

where z is the length L vector formed by the samples of z(n),
d is the length Q vector [0, 1, 0, ..., 0]T , and S is a Q×L matrix
formed by products of delayed input samples. The system has
minimum norm solution

z = S(SST )−1d, (11)
where the matrix SST elements are cross-correlations of basis
functions with different time delays (moments of the input
samples over a period). SST can be put in block Toeplitz
form by properly sorting the rows of the matrix S. Thus,
efficient algorithms exist for the solution of (5)–(8), as for
example the algorithm in [24]. Given the nonlinear dependence
of the elements of SST from x(n), for some input signal SST

could have a bad conditioning. Anyway, working with double
precision arithmetic, for sufficiently large L a solution with
sufficient accuracy has always been found.

In output noise absence, an input-OPS pair for a Volterra
filter of order K, memory N , diagonal number D allows the
identification of the first order kernel of any Volterra system
up to the order K, memory N , diagonal number D. When
the memory of the system to be modeled is N + ∆ > N ,
the first ∆ estimated samples of h1(j) will be affected by an
aliasing error. When the order of system if larger than K, or
the diagonal number is larger than D, all estimated samples of
h1(j) will be affected by an aliasing error, which will depend
on the value of the coefficients of order larger than K, or
diagonal number larger than D, and will depend also on the
specific input-OPS pair.

2019 27th European Signal Processing Conference (EUSIPCO)
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Fig. 1. Typical measurement system.

An error is also present when the output of the Volterra
system is corrupted by an additive noise ν(n). We can estimate
the mean-square deviation MSDj of the coefficient h1(j)
caused by the noise, where

MSDj = E[(h1(j)− h̃1(j))2], (12)
with h1(j) the coefficient measured with (4) and h̃1(j) its true
value. From (4),

MSDj = E[(< ν(n)z(n− j) >L)2]. (13)
MSDj is proportional to the power of ν(n), σ2

ν , and according
to (6) is inversely proportional to < x2(n) >L. To compare
different OPSs on equal terms, the noise gain Gν has been
introduced in [20], with

Gν =
MSDj
σ2
ν

< x2(n) >L . (14)

It can be proved that

Gν =< z2(n) >L · < x2(n) >L, (15)

and is independent from the coefficient index j.
We have found that Gν can greatly change with L, since the

choice of L influences the power of OPS z(n). When L = Q,
the minimum possible period of the OPS, Gν often assumes
very large values: the effect of noise is highly amplified and
OPS identification is useless. On the contrary when L � Q,
Gν assumes reasonable values and we can take advantage of
OPS identification.

III. ROBUST RIR MEASUREMENT

Consider a typical scheme of the RIR measurement system,
reported in Fig. 1. The system is composed of a power
amplifier, a loudspeaker, a room acoustic path, and a mi-
crophone. The measurement aims at estimating its impulse
response hR(n), which is assumed to have length M . The
power amplifier and the loudspeaker system at high volumes
are often the source of nonlinear effects. The microphone can
be considered as a linear system, due to the low level of the
acquired signals. Its effect will be neglected in the following
or better included in the model of the power amplifier and
loudspeaker system. In these conditions, the measurement
system of Fig. 1 can be modeled as a Volterra filter of order
K, memory NT = N + M − 1 and diagonal number D. In
fact, modeling the amplifier and loudspeaker system with (3)
and neglecting f0(n) = 1, the measurement system has the
following input-output relationship,

m̂(n) = hR(n)∗ŷ(n) = hR(n)∗
R−1∑
p=1

hp(n)∗fp(n) =
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= hR(n)∗h1(n)∗x(n)+
R−1∑
p=2

hR(n)∗hp(n)∗fp(n). (16)

Exploiting an input-OPS pair for Volterra filters of order K,
memory NT, and diagonal number D, the first order kernel of
(16), hT(n) = hR(n)∗h1(n), can be estimated with the cross-
correlation method. Using the same input-OPS pair and the
same reproduction volume, the first order kernel of the power
amplifier and loudspeaker system h1(n) can be measured and
characterized in an anechoic chamber.

As it was proposed for linear systems [25], hR(n) can be
obtained by equalizing hT(n) with the inverse response of
h1(n), exploiting the Kirkeby algorithm, as follows:

hR(n) = IFFT

[
FFT[hT(n)] · FFT[h1(n)]∗

FFT[h1(n)] · FFT[h1(n)]∗ + ε(ω)

]
, (17)

where FFT[·] and IFFT[·] are direct and inverse FFT opera-
tors, respectively, ε(ω) is a frequency-dependent regularization
parameter. Very often, since the amplifier and loudspeaker
affect the measurement in a known, mild manner, it is com-
mon to approximate directly hR(n) with hT(n), which is
hR(n)∗h1(n). In any case, for the orthogonality properties of
OPSs, the measurements of hT(n) and hR(n) are not affected
by the nonlinear kernels of the amplifier and loudspeaker
systems, i.e., by hp(n) for all p > 1, provided that an OPS
of sufficient order and memory is used. Thus, the proposed
RIR measurement system is immune to the nonlinearities of
the amplifier and loudspeaker, even when they have memory.

IV. EXPERIMENTAL RESULTS

In order to test the robustness towards nonlinearities of
OPSs and compare the proposed method with competing ap-
proaches, we have considered an emulated scenario. Periodic
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input sequences with uniform, Gaussian, and pink distribution,
having different periods L = [163820, 218, 219, 220, 221] and
quantized at 10 bits, have been applied to a real device, a
Behringer MIC 100 vacuum tube preamplifier, at a sampling
frequency of 44.1 kHz. For each input sequence, OPSs for the
identification of the first order kernel of a Volterra filter with
K = 3, N = 8192, D = 2, have been developed. The number
of equations of the system in (5)–(8) in these conditions is
Q = 163820. Figure 2 shows the noise gain in dB for the
different OPSs versus the binary logarithm of L. Clearly, when
L = Q the noise gain assumes unacceptably large values that
makes OPS measurement useless. On the contrary, for larger
values of L the noise gain reduces and assumes reasonable
values that allow profitable use of the OPSs.

For comparison, PPSs for WN and LN filters (of order 3,
K = 3, N = 8192, D from 0 to 4, log2(L) from 17 till 21),
MLSs and ESs (with log2(L) ranging from 17 to 21) have
also been applied to the preamplifier in the same conditions.
All input sequences had the same peak amplitude.

In the emulated scenario, the preamplifier implements the
nonlinearities introduced by power amplifier and loudspeaker.
It has a potentiometer that allows to control the amount of
nonlinear distortion introduced. Ten different settings have
been considered and Fig. 3 shows the second, third, and
total harmonic distortion in percent on a 1 kHz tone at the
maximum amplitude of the sequences. Clearly, many of the
harmonic distortions of Fig. 3 are larger than those expected in
a measurement system, but they have been selected so large to
stress the robustness of the proposed approach. The recorded
output of the preamplifier has been convolved with a known
RIR and a white Gaussian noise has been added to the output
to have a signal to noise ratio of 40 dB. The known RIR
allows us to calculate the log-spectral distance (LSD) [26, 27]
between the measured RIR and its actual value. The LSD is
defined in the band B = [k1

FS

T , k2
FS

T ], with k1 and k2 ∈ N,
FS the sampling frequency and T the number of the samples
of the discrete Fourier transform (DFT), as follows:

LSD =

√√√√ 1

k2 − k1 + 1

k2∑
k=k1

[
10 log10

|HR(k)|2

|ĤR(k)|2

]2
, (18)

where |HR(k)| is the actual room magnitude response and
|ĤR(k)| is the measured room magnitude response.

Figure 4 shows the LSD in dB, computed in the band
[100, 18000] Hz, of the measured RIR without any compensa-
tion of the pre-amplifier. The Figure reports results obtained
with WN filter and PPS in panel (a), LN filter with PPS in
panel (b), MLS based method in panel (c), ES based method
in panel (d). The results of the proposed OPS methodology are
presented in the panels (e–g) for a Volterra filter and uniform,
Gaussian and pink input distribution, respectively. Figure 4
shows comparable results for all methods except the MLS that
always performs worse than others. The numerical results of
OPS based method, especially with Gaussian or pink inputs,
are comparable with PPS, making it an interesting candidate
for RIR estimation.

Figure 5 shows the LSD in dB of the measured RIR after the
nonlinearity compensation performed with the Kirkeby algo-
rithm (17). Panels are organized as in the previous figure. The
best results are obtained with a Gaussian input distribution,
i.e., with the WN filter identified with PPSs of panel (a),
and with the Volterra filter identified with OPSs of panel (f),
demonstrating the effectiveness of the proposed methodology.

V. CONCLUSION

The paper discussed the application of the recently proposed
OPSs [20] to RIR identification. The methodology is the same
used in [19], that demonstrated to be robust towards non-
linearities affecting the measurement chain. The OPS based
methodology offers similar performance as the PPS one, with
all the advantages of OPSs over PPSs. Specifically, OPSs can
directly estimate the measurement system impulse response
for small signals, i.e., the first order kernel of the Volterra
model. They can be derived solving a linear system. More
importantly, the persistently exciting periodic input sequence
can be arbitrarily chosen, e.g., can also be a pink noise, and
can be a quantized sequence.
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Fig. 4. LSD between measured and real RIRs in band [100, 18000] Hz without pre-amplifier compensation: (a) PPSs for WN filter, (b) PPSs for LN filter, (c)
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Fig. 5. LSD between measured and real RIRs in band [100, 18000] Hz with pre-amplifier compensation: (a) PPSs for WN filter, (b) PPSs for LN filter, (c)
MLSs, (d) ESs, (e) OPSs for Volterra with uniform distribution, (f) OPSs for Volterra with Gaussian distribution, (g) OPSs for Volterra with pink distribution.
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