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Abstract—Optimal detection in multiple-input multiple-output
(MIMO) frequency-selective systems is known to have expo-
nential complexity in the number of transmitter antennas and
channel length resulting from intersymbol interference. Several
studies focus on suboptimal detectors, proposing trade-offs be-
tween computational complexity and bit error rate. In this paper,
we model the detection problem using factor graphs and apply
the sum-product algorithm to derive the optimal detector. Then
we propose a novel suboptimal particle filter detector, based on
sequential Monte Carlo, followed by a Markov chain Monte Carlo
step to further enhance performance. The proposed algorithm
exchanges the exponential complexity in channel length for a
linear complexity in the number of particles and achieves better
bit error rate than the linear minimum mean square error
(LMMSE) detector.

Index Terms—Equalization, MIMO detection, particle filter,
Markov chain Monte Carlo, factor graphs

I. INTRODUCTION

In multiple-input, multiple output (MIMO) communication
systems, the transmitted symbols must be recovered from
received signals that are corrupted by noise and intersymbol
interference (ISI). The optimal solution for joint decoding of
the transmitted symbols given the received signals recorded at
all receiving antennas is the maximum a posteriori (MAP)
detector which was proven, however, to have exponential
complexity in the number of transmitter antennas and in
the channel length resulting from ISI. That computational
complexity motivates the development of suboptimal decoding
approaches that make MIMO systems scalable [1].

The joint probability mass function (pmf), or density func-
tion (pdf), of the transmitted symbols can be represented by a
factor graph (FG), as suggested in [2]- [4]. The sum-product
algorithm (SPA), or message-passing, is the tool to obtain the
marginal distributions required for decoding from a FG and
results in the MAP detector if applied directly.

Suboptimal detectors can be derived using suitable ap-
proximations to the messages that flow through the FG in
the SPA equations. In the linear minimum mean square
error (LMMSE) approach [3], messages are approximated
by multivariate Gaussian functions, whose mean vectors and
covariance matrices are then propagated by the SPA. The
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Markov chain Monte Carlo (MCMC) detector [4] is based on
the Gibbs sampler (GS), which uses conditional probability
distributions to draw samples that converge to samples from
the desired joint pmf and can be then averaged out.

In [5], we implemented the LMMSE and MCMC detectors
in [4] and proposed a hybrid MCMC/LMMSE detector using
the LMMSE solution to initialize the GS in the MCMC
detector. The proposed hybrid algorithm achieved better bit
error rate (BER) than the LMMSE and MCMC detectors
individually. However, the Gaussian approximation fails to
capture multiple peaks present in the joint pmf, whereas the
GS presents the stall effect, i. e. the BER stops decreasing as
the SNR increases. To overcome those limitations, motivated
by [6] and [7], we propose a novel particle filter (PF) detector
based on a sequential Monte Carlo (SMC) approximation of
the functions in the SPA. The use of SMC approximations re-
sults in a significant reduction in the computational complexity
of the SPA because the most costly operations in the algorithm
have to be done only in a reduced set of transmitted symbols.
Furthermore, we also propose a new hybrid MCMC/PF detec-
tor, where we perform the MCMC step initialized with the PF
solution to further enhance performance.

The paper is divided in six sections. Sec. I is this Intro-
duction. In Sec. II, we describe the signal model and its FG
representation. In Sec. III, we present the exact equations
for the MAP detector. In Sec. IV, we introduce the Monte
Carlo based detectors. Simulations and detector comparison
are shown in Sec. V and conclusions are presented in Sec. VI.

Notation: We denote scalars by a or A, vectors by a
and matrices by A. (.)T and (.)H denote matrix transpose
and hermitian. I denotes the identity matrix. [A]i,j is the
element in the i-th row and j-th column of matrix A. We
denote random vectors by A, which can be distinguished from
deterministic matrices in context. We denote the probability
of an event by Pr(A). If A is discrete, we denote its pmf
Pr({A = a}) by P (a). If A is continuous, we denote its pdf
by p(a). The expectation operator is denoted by E.

II. PROBLEM STATEMENT

A. Signal Model of the Communication Problem

We assume a MIMO communication system with NT trans-
mitter and NR ≥ NT receiver antennas. The wireless chan-
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nel is linear, time-variant, frequency-selective with impulse
response length L and presents Rayleigh fading. A stream of
Nb uncoded bits is transmitted, each Q bits being mapped into
Ns = Nb/Q symbols according to some symbol alphabet A
of size 2Q. The symbols are transmitted over N = Ns/NT

time instants, and received over M = N +L−1 time instants
due to ISI.

We assume the wireless channel has a coherence time
of M , meaning that it will remain constant while the bit
stream is being received. The channel is described by its
taps [H1 · · ·HL], where each [Hl]r,n ∈ C is the channel
coefficient between the n-th transmitter and the r-th receiver
antenna in the l-th reflection, drawn from a complex Gaussian
distribution CN (0, 1). The channel estimation problem is not
in the scope of this paper, thus all channel coefficients are
considered perfectly known at the receiver.

Let sni be the symbol at the n-th transmitter antenna at time
instant i and si = [s1i · · · s

NT
i ]T be the vector of all transmitted

symbols at instant i. The received signal is then modeled by

yi =

L∑
l=1

Hlsi−l+1 + zi (1)

where yi = [y1i · · · y
NR
i ]T , yri denotes the signal received by

the r-th receiver antenna at instant i, and zi is random white
complex Gaussian noise, with E[Zi] = 0 and E[ZiZ

H
i ] = σ2

zI.
The problem of interest is to obtain an estimate b̂ of

all transmitted bits b given the collection y = y1:M =
[yT

1 · · ·yT
M ]T of all observations yi using P (b|y). The MAP

detector expression for each bit is given by

b̂k,MAP = argmax
bk∈{0,1}

∑
b/{bk}

P (b|y) = argmax
bk∈{0,1}

P (bk|y). (2)

where
∑

b/{bk} denotes summation over all variables in b,
except bk. Since bits and symbols relate to each other deter-
ministically, the bitwise detector in (2) can be expressed as an
equivalent symbolwise detector based on P (s|y)

ŝni,MAP = argmax
sni ∈A

∑
s/{sni }

P (s|y) = argmax
sni ∈A

P (sni |y), (3)

where s represents the collection of all transmitted symbols.

B. Representation with Factor Graph

The joint probability functions P (b|y) or P (s|y) can be
factorized and represented by a factor graph, so we can apply
the SPA to calculate the marginals needed for detection in (2)
and (3). Without loss of generality, applying Bayes’ Law to
the probability function P (s|y), we obtain

P (s|y) ∝ p(y|s)P (s). (4)

Applying the chain rule to the likelihood function on the
right side of (4), expanding y and s as the collection of all
received and transmitted signals, and observing conditional

Fig. 1. Cycle-free FG resulting from factorization in (6).

independence properties of the received signal yi, we rewrite
the likelihood function on the right as

p(y|s) =

M∏
i=1

p(yi|wi), (5)

where wi = [sTi−L+1 · · · sTi ]T is a state variable representing
all transmitted symbols that influence the signal received at
instant i. In order to obtain a cycle-free FG, we follow
the lead in [3] and introduce indicator probability functions
P (wi|wi−1) and P (wi|si), which evaluate to 1 when all
the common symbols sj between wi and wi−1 or si match.
Equation (5) is not modified if written as

p(y|s) = p(y1|w1)P (w1|s1)

×
N∏
i=2

p(yi|wi)P (wi|wi−1)P (wi|si)

×
M∏

i=N+1

p(yi|wi)P (wi|wi−1),

(6)

which can be represented by the factor graph in Fig. 1, along
with the messages of interest for each variable node and time
instant i.

III. OPTIMAL DETECTOR

The sum-product algorithm (SPA), or message-passing, is
described in [2]. Its output are the marginal probability func-
tions for each variable node in the FG. If performed exactly,
we obtain the exact a posteriori probability functions and can
perform the MAP detection.

The exact application of the SPA consists of considering
each message as a discrete pmf and evaluating it individually
at each state. The resulting equations are given in [3]. All
messages are normalized to a total probability of one in order
to be valid pmf’s.

The a priori knowledge of the symbol distribution is repre-
sented by message 1, or m1, defined in Fig. 1, which is usually
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considered uniform. Using the SPA expressions, message 2
defined in Fig. 1 is calculated as

m
(i)
2 (wi) =

∑
si

P (wi|si)
NT∏
n=1

m
(i)
1,n(sni ). (7)

Message 3 is calculated from the observation model as

m
(i)
3 (wi) ∝ exp

[
−
∥∥(yi − H̄iwi)

∥∥2 /σ2
]

(8)

where the matrix H̄i, extended from (1), is given by

H̄i =


[Hi · · ·H1] , i < L

[HL · · ·H1] , L ≤ i ≤ N
[HL · · ·Hi−N+1] , i > N.

Messages 4 and 6 are calculated sequentially for i =
1, · · · , N , forming the forward recursion

m
(i)
6 (wi) = m

(i)
2 (wi)m

(i)
3 (wi)m

(i)
4 (wi) (9)

m
(i)
4 (wi) =

∑
wi−1

P (wi|wi−1)m
(i−1)
6 (wi−1). (10)

Messages 5 and 7 are also calculated sequentially for i =
M, · · · , 1, forming the backward recursion

m
(i)
7 (wi) = m

(i)
2 (wi)m

(i)
3 (wi)m

(i)
5 (wi) (11)

m
(i)
5 (wi) =

∑
wi+1

P (wi+1|wi)m
(i+1)
7 (wi+1). (12)

Message 9 is calculated to finish the SPA. It has the following
simplified expression [4]:

m
(i)
9,n(sni ) =

1

m
(i)
1,n(sni )

∑
wi

P (wi|si)m(i)
5 (wi)m

(i)
6 (wi).

(13)
Finally, detection is done by calculating the marginal dis-

tribution of each symbol, P (sni |y), as the product m(i)
1,nm

(i)
9,n,

and finding the maximum according to (3). In some cases, it
is interesting to perform turbo processing feeding back m(i)

9,n

in m(i)
1,n, as an improved a priori knowledge [4].

At each instant i, the messages whose argument is wi

require performing calculations for each of the O(2QLNT )
possible values assumed by wi, a set we denote as Wi.

IV. PARTICLE DETECTORS

In this work, the approach to obtain suboptimal detectors
is to approximate the messages using particle methods. We
propose a particle filter (PF) detector based on a sequential
Monte Carlo approximation, followed by a MCMC detector
initialized with the previously obtained solution.

A. Particle Filter Detector

A particle representation of a function f(x) is a list of
weighted particles L , {(x(p), w(p))}, for p = 1 to Np, such
as that w(p) ≥ 0 and

∑Np

p=1 w
(p) = 1.

The particle filter (PF) detector is derived approximating the
messages in the MAP equations (7) to (13). In the forward
recursion, assuming m(i−1)

6 is given, we represent it with Np

particles drawing samples w(p)
i−1 from it, with uniform weights.

Message 4 is then calculated as

m
(i)
4 (wi) ≈

Np∑
p=1

P (wi|w(p)
i−1)w(p) ∝ 1

Np

Np∑
p=1

m̂
(i)(p)
4 (wi).

(14)

We define m̂
(i)(p)
4 as a particle message associated with

m
(i)
4 . It must be normalized to be a valid pmf. For each

p, when calculating m̂
(i)(p)
4 , only the 2QNT states wi =

[s
T (p)
i−L+1, · · · , s

T (p)
i−1 , s

T
i ]T will not be zero. We denote the set

containing those states wi as W(p)
i,F .

The second step of the forward recursion is the calculation
of m(i)

6 . Using (9) and (14),

m
(i)
6 (wi) ≈ m(i)

2 (wi)m
(i)
3 (wi)

1

Np

Np∑
p=1

m̂
(i)(p)
4 (wi)

=
1

Np

Np∑
p=1

m
(i)
2 (wi)m

(i)
3 (wi)m̂

(i)(p)
4 (wi)

=
1

Np

Np∑
p=1

m̂
(i)(p)
2 (wi)m̂

(i)(p)
3 (wi)m̂

(i)(p)
4 (wi)

∝ 1

Np

Np∑
p=1

m̂
(i)(p)
6 (wi),

(15)

where m̂
(i)(p)
6 must be normalized to a valid pmf. Particle

messages m̂(i)(p)
2 and m̂(i)(p)

3 are defined as assuming the same
values of (7) and (8), respectively, if wi ∈ W(p)

i,F , and zero
otherwise, since m̂(i)(p)

4 is zero for those states.
All m̂(i)(p)

6 must be averaged elementwise in order to obtain
m

(i)
6 and proceed with the forward recursion. The initial

message m(1)
6 is calculated using the MAP equations.

The backward recursion requires sampling from m
(i+1)
7 in

order to obtain particles w
(p)
i+1. Following (14) and (15), we

define particle messages m̂(i)(p)
5 and m̂(i)(p)

7 as

m̂
(i)(p)
5 (wi) ∝ P (w

(p)
i+1|wi) (16)

m̂
(i)(p)
7 (wi) ∝ m̂(i)(p)

2 (wi)m̂
(i)(p)
3 (wi)m̂

(i)(p)
5 (wi), (17)

which evaluate to zero unless wi =
[sTi−L+1, s

T (p)
i−L+2, · · · , s

T (p)
i ]T , which we define as

wi ∈ W(p)
i,B . In order to proceed with the backward
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Fig. 2. Factor graph node modification for bitwise detection in MCMC.

recursion, all m̂(i)(p)
7 and m̂

(i)(p)
5 are averaged elementwise.

The initial message m
(M)
7 is calculated using the MAP

equations. Similarly to the forward recursion, the backward
recursion has computational complexity O(Np2QNT ).

The last approximation is done for m(i)
9,n (13). We avoid the

summation over Wi using a particle representation either for
m

(i)
5 or m(i)

6 . Drawing Np particles from m
(i)
6 , we define

m̂
(i)(p)
9,n (sni ) ∝ 1

m
(i)
1,n(sni )

P (w
(p)
i |si)m

(i)
5 (w

(p)
i ), (18)

where P (w
(p)
i |si) evaluates to one only for sni = s

n,(p)
i . All

m̂
(i)(p)
9,n are averaged to obtain m(i)(p)

9,n .
The advantage of this method is that all particle messages

whose argument is wi, for p = 1 to Np, are evaluated with
complexity O(Np2QNT ), eliminating the exponential com-
plexity in L present in the optimal detector. The averaging of
particle messages m̂(i)(p)

6 and m̂(i)(p)
7 still has to be done with

complexity O(2QLNT ), but this is a much simpler operation
than those in (7) and (8), thus having a smaller computa-
tional time. The initialization steps in both recursions do not
compromise the complexity, since w1 = s1 and wM = sN .
The number of particles Np can be viewed as a parameter
that can adjust the trade-off between BER performance and
computational complexity.

B. MCMC-based Hybrid Detector

The MCMC detector is based on the Gibbs sampler [8],
[9]. Following the approach in [4], decoding is done using
the bitwise detector in (2), whose FG requires changing the
symbol nodes in Fig. 1 for bit nodes as in Fig. 2. The
GS approximates the desired pmf iteratively generating R
samples from P (b|y) by drawing samples from all conditional
probabilities P (bk|b/{bk},y). Given the a priori distribution
of bits m̂(i)(r)

0,k (bk), the equations needed to draw a sample bk
are given by [4]

m̂
(i)(r)
3 (bk) ∝ exp

[
−
∥∥∥(yi − H̄iw

(r)
i (bk))

∥∥∥2 /σ2

]
(19)

m̂
(i)(r)
7 (bk) ∝ m̂(i)(r)

3 (bk)m̂
(i)(r)
5 (bk) (20)

m̂
(i)(r)
5 (bk) ∝ m̂(i+1)(r)

7 (bk) (21)

m̂
(i)(r)
10,k (bk) ∝ m̂(i)(r)

3 (bk)m̂
(i)(r)
5 (bk) (22)

b
(r)
k ∼ m(i)

0,k(bk)m̂
(i)(r)
10,k (bk). (23)

In (19) to (23), the index k corresponds to the k-th transmitted
bit, whereas i is the time instant when this bit was transmitted
and r is the index of the r-th iteration of the GS.

The samples are drawn from k = 1 to Nb and then from
r = 1 to R. After all samples are drawn, we decode the
correct bits “burning” the first b particle messages m̂

(i)(r)
10,k

and averaging the remaining, for r = b + 1 to R. w
(r)
i (bk)

is the state of symbols modulated from a subsequence of the
sequence of bits [b

(r)
0 , · · · , b(r)k−1, bk, b

(r−1)
k+1 , · · · , b(r−1)Nb

]. For
each bit and GS iteration r, (19) to (22) are performed L
times [4], which gives a total complexity for decoding each
symbol of O(QLR).

The GS requires an initial state for the bits, which is usually
chosen at random. However, encouraged by [10], we apply to
our equalization problem an initialization coming from other
suboptimal detector, resulting in the hybrid detector.

V. RESULTS AND DISCUSSION

We compared the BER performances of the suboptimal and
the MAP detectors via Monte Carlo simulations. The basic
simulation setup is the following: NR = 2, NT = 2 and L =
2, with BPSK modulated symbols. The bits are transmitted
in batches of coherence time 16, meaning that the channel
coefficients drawn independently from a CN (0, 1) distribution
remain constant only during the transmission of 16QNT bits.
The PF detector is set initially with Np = 40, and the Gibbs
sampler with R = 15 and b = 5.

Figure 3 presents the comparison between the following
detectors: MAP, PF, hybrid MCMC/PF, LMMSE, hybrid
MCMC/LMMSE and pure MCMC. At low signal-to-noise
ratio (SNR) regimes, all detectors present similar performance.
As the SNR increases, the BER of both the PF and LMMSE
detectors decreases, with the PF detector curve occupying the
region between the LMMSE and MAP curves. The MCMC
detector, however, reaches a BER floor due to the Gibbs
sampler stall effect [11].

The fact that the PF detector has complexity O(Np2QNT )
compared to O(L3N3

T ) and O(2QLNT ) for the LMMSE
and the MAP detectors, respectively, makes it an attractive
algorithm based on a trade-off between performance and
computational cost. The performance gains achieved by the
PF detector compared to the LMMSE detector are explained
by the ability of the SMC approach to better approximate any
probability distribution, as opposed to the Gaussian approach,
which fails to capture the multimodality of the joint probability
distribution of the symbols in the constellation.

On the other hand, compared to the pure MCMC detec-
tor, the PF detector presents much better BER and, more
importantly, did not exhibit the stalling effect in the sim-
ulated SNR range. Conversely, the hybrid MCMC/PF and
MCMC/LMMSE detectors perform very similarly and better
than any of the three suboptimal detectors independently, but
just slightly better than the PF detector. Given that the MCMC
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Fig. 3. BER performance of different suboptimal detectors, BPSK

Fig. 4. Particle filter detectors with different Np, BPSK

step increases the complexity with a O(QLR) factor and the
gains are modest compared to the PF detector, the latter still
continues to be an attractive option.

Finally, Fig. 4 and 5 depict the PF detector performance for
BPSK and QPSK modulations, with Np = 20 and 40. Increas-
ing the number of particles improves the BER, as expected in
a Monte Carlo method. The gain from increasing Np is more
significant in the QPSK scenario, since a modulation with
more symbols presents more peaks and is better represented
by Monte Carlo approximations with more particles.

VI. CONCLUSION

In this paper, we applied a factor graph formulation to solve
the problem of equalization of a MIMO frequency-selective
channel and derived a particle filter detector by proposing
suitable Monte Carlo approximations to the SPA messages
over the FG. Unlike the optimal MAP detector which has
exponential complexity in the channel length, the proposed PF
detector exhibits linear complexity in the number of particles,

Fig. 5. Particle filter detectors with different Np, QPSK

which can be tuned to achieve different levels of suboptimal
BER. The BER performance of the proposed PF detector
compares favorably to the LMMSE detector based on Gaussian
approximations of the SPA messages. Further improvements
in detection performance can be achieved by using an MCMC
detector initialized with the output of either the PF or the
LMMSE detectors. The hybrid detectors eliminate the stall
effect seen in pure MCMC detectors at high SNR but, in our
simulations, the hybrid MCMC/PF detector did not show any
statistically significant difference in performance compared to
the hybrid MCMC/LMMSE detector.
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