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Abstract—Compressive spectral imaging (CSI) allows the
acquisition of spatial information of a scene along multiple spec-
tral bands using fewer projected measurements than traditional
scanning methods. In general, to obtain high resolution spatial
and spectral information, expensive detectors and sophisticated
optical devices are required. Fortunately, the single-pixel camera
(SPC) is a low-cost optical architecture since it uses a light
sensor compared to CSI architectures with larger sensors.
However, this advantage is overshadowed by the large number of
projections needed to recover the spectral image, which entails
large acquisition times. Alternatively, high-resolution spectral
images can be obtained using SPC with side-information, without
significantly increasing acquisition costs. However, this approach
retrieves improved resolution images applying iterative and
computationally expensive algorithms. This paper proposes a
non-iterative method that combines the spectral information of
SPC and the side information of a multispectral image to recover
high resolution spatial and spectral information. The proposed
fast compressive spectral imaging (FCSI) reconstruction method
exploits the fact that the spatial-spectral data lie in a low
dimensional subspace. This methodology allows to reduce the
number of required measurements in the SPC as well as
the computation time of the reconstruction. Simulations and
experimental results show the effectiveness of the proposed
method compared to similar approaches, both in reconstruction
quality and sample complexity.

I. INTRODUCTION

Spectral imaging systems sense two-dimensional (2D)
spatial information (x, y) of a scene along the electromagnetic
spectrum (λ). These images provide richer spectral informa-
tion of the scene compared to RGB color images, which
enables material and object identification in different appli-
cations such as biomedical imaging [1], crop identification
[2] and surveillance [3]. Traditionally, scanning-based devices
such as whiskbroom and pushbroom spectrometers are used
to measure the spectrum at all spatial points of the scene [4].
However, some applications require high-resolution images;
therefore, hundreds or thousands of spectral bands need to
be sensed, which makes spectral data cube acquisition and
processing a challenging problem under these setups.

Alternatively, compressive spectral imaging (CSI) acquires
compressed projections of the entire data cube instead of
direct measurements of all voxels [5]. CSI allows to reduce
the dimensionality of the data without further processing
steps. Moreover, to obtain the spectral image from the com-
pressed projections, numerical optimization methods based
on sparse priors are used [5]. From an implementation point
of view, CSI architectures employ optical elements such as
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coded apertures, spatial light modulators, prisms, gratings
and intensity detectors, to obtain the projected measurements
[6]. However, high-resolution image acquisition requires so-
phisticated optical devices such as specialized prisms or
large detectors that enable a detailed discretization of the
spectrum but considerably increase the implementation costs
[6]. Therefore, achieving high-resolution spectral images at
lower implementation costs is still an open problem.

The single-pixel camera (SPC) is a low-cost CSI architec-
ture, since it uses a single spatial pixel as sensor to acquire
the entire image, compared with other CSI devices which
use large and more expensive 2D detectors [6]. Nonetheless,
the robustness of this architecture is overshadowed by the
large number of projections needed to obtain good quality
reconstructions [6]. Alternatively, dual arm optical systems
have been proposed to capture both SPC measurements and
an auxiliary multispectral image such that fewer projections
are acquired [7], [8]. More specifically, one arm of these
systems captures SPC measurements, while the other arm
acquires an RGB or panchromatic image of the scene that is
later used to guide the reconstruction process. This approach
exploits the high spectral resolution of the SPC and the
high spatial resolution of the side information to obtain
high-quality images from few measurements, which in turn,
reduces acquisition times. Reconstructions, however, are still
expensive due to the iterative nature of employed algorithms.

This work proposes a non-iterative reconstruction algo-
rithm for single pixel spectral imaging using a multispectral
image as side information. This method exploits the natural
characteristics of spectral images, that are assumed to lie
in a low dimensional subspace [9], unlike the sparse rep-
resentations in [7], [8]. This characteristic allows spectral
images to be treated as low-rank structures, such that in the
absence of noise, the algorithm can exactly calculate a basis
for the subspace and image coefficients, when the number
of measurements in the SPC and the number of bands in
the multispectral image are larger than the dimension of the
subspace. This methodology allows to reduce the number of
measurements in the SPC as well as the computation time
of the reconstruction. Specifically, the proposed algorithm is
up to 200 times faster since it does not perform iterations
and, improves reconstruction quality in up to 10 dB of peak
signal- to-noise ratio (PSNR) for a noise level of 30 dB of
SNR compared with state-of-the-art iterative reconstruction
algorithms based on side information.

Throughout the paper, we denote each voxel of a M ×
N × L hyperspectral image as f(i,j,l) where i = 1, . . . ,M ,
j = 1, . . . , N index the spatial coordinates and l = 1 . . . , L
represents the spectral band index.
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Fig. 1. Single Pixel Imaging optical flow used to acquire high-resolution
image with multispectral camera as side information.

II. FORWARD SENSING MODEL OF THE SINGLE PIXEL
CAMERA WITH SIDE INFORMATION

The setup of the single pixel camera for spectral imaging
is shown in Figure 1 [10], [11]. This architecture comprises a
coded aperture that spatially encodes the scene and, it is math-
ematically modeled as a binary function h(i,j) ∈ {−1, 1}.
Then, the encoded scene is projected into a single spatial point
by a collimation lens, where a whiskbroom spectrometer is
used as a detector, which splits the scene into its spectral
bands. This system can be modeled as a linear mapping,
where all pixels (i, j) of the image f(i,j,l) in the l-th band
are projected to a single point y(l) as

y(l) =

M∑
i=1

N∑
j=1

h(i,j)f(i,j,l). (1)

In order to obtain different projections of the same scene,
the configuration of the coded aperture is changed such that
multiple shots are acquired. Assuming K shots, Eq. (1) can
be expressed as a linear system of the form

Y = HF, (2)

where H ∈ {−1, 1}K×MN denotes the SPC sensing matrix,
in which the k-th row is the vectorization of the coded aper-
ture used for that particular shot; Y ∈ RK×L represents the
observation matrix, and F ∈ RMN×L is the hyperspectral data
cube organized as F = [f(1), . . . , f(MN)]

T , where f(p) ∈ RL

represents the spectral signature of the p-th pixel. Figure
1 includes a second arm, in which a multispectral image
of the same scene is captured. It is generally assumed that
the observed multispectral images are obtained under the
same atmospheric and illumination conditions; thus, these
observations result from linear spectral degradations of the
full resolution image F. Given that the number of bins, i.e.
spectral bands, measured by the spectrometer is L′ < L,
this work assumes that each channel of F matches the range
spanned by ∆ spectrometer bins such that

fM(i,j,l) =
l∆∑

k=(l−1)∆+1

ω(k)f(i,j,k), (3)

where fM represents the multispectral image and ω(k) denotes
the spectral response of the multispectral sensor. Equation (3)
can be expressed in matrix form as

FM = FD, (4)

where D is a down-sampling matrix accounting for the
decimation and the spectral response of the sensor, with a
factor of ∆ given the gap between the spectrometer and the
resolution of the multispectral image.

Traditional models to recover the hyperspectral image
from the set of SPC measurements in (2) and the side
information from (3), use a vectorization form of the problem
[7]. Letting f̃ ∈ RMNL be the vectorized image of the
form f̃ = [fT(1), · · · , f

T
(MN)]

T [7], assume a sparse prior such
that the image can be written as a linear combination of S
elements on a basis Ψ, i.e. f̃ = Ψθ with S << MNL.
Therefore, the optimization problem for the reconstruction
model is expressed as

f̂ = Ψ

{
arg min

θ
‖H̃Ψθ − ỹ‖22 + ‖D̃Ψθ − fm‖22 + τ‖θ‖1

}
,

(5)
where H̃ is the vector representation of H in (2), expressed
as H̃ = IL ⊗H with ⊗ as the Kronecker product, and IL is
a L×L identity matrix; ỹ and fm represent the vectorization
of the matrix of projections Y and the multispectral image
FM , in (2) and (3), respectively. Finally, define R ∈ R1×∆

as the spectral response of the multispectral sensor and
D̃ = IL⊗(R⊗ IMN ) represents the down-sampling operator.
The `1-norm term promotes sparsity and τ is a regularization
parameter for the sparsity and noise trade-off.

III. NON-ITERATIVE RECONSTRUCTION ALGORITHM

Unlike the problem in (5) that uses the sparse represen-
tation of the spectral image, this work proposes to exploit
the fact that the data lies in a C−dimensional subspace S,
with C << L. This is a common approach used in many
applications [12], [13], [14], where each spectral vector f(p)

is expressed (non-uniquely1) as

f(p) = Ea(p), for p = 1, · · ·MN, and F = AE, (6)

with A = [a(1) · · ·a(MN)], where a(p) ∈ RC are the repre-
sentation coefficients of f(p) with respect to E, whose columns
form a basis for the subspace. Notice that this formulation can
be applied to the linear mixture model (LMM), where the
matrix E may be interpretable as the endmembers matrix,
and A as the corresponding abundance matrix. However, this
work focuses on the general case of a blind reconstruction of
A and E. Note that, from (4) we have that the multispectral
image maintains the spatial sizes of the scene, however, the
spectral dimension exhibits a degradation of the form

FM = AED = AẼ, (7)

where Ẽ = ED is the decimation basis. Notice that in the
LMM framework, the decimation matrix Ẽ can be obtained
using some endmember extraction algorithm such as Vertex
complex analysis (VCA) [14] with C as input, or any other
way to find the basis of a subspace such as the truncated
SVD decomposition [15]. Since Ẽ is a base of the subspace
S, its rows are linearly independent; therefore, the abundance
matrix can be recovered as

A = F̃M ẼT
(
ẼẼT

)−1

. (8)

1The matrix F can be rewritten as FT = (AR)(RTE) for any rotation
matrix R.
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On the other hand, notice that the SPC in (1) can be expanded
as

y(l) =
M∑
i=1

N∑
j=1

h(i,j)

C∑
c=1

e(c,l)a(i,j,c)

=
C∑

c=1

e(c,l)

M∑
i=1

N∑
j=1

h(i,j)a(i,j,c), (9)

yielding an interesting observation: in this architecture, the
codification only affects the abundance map. Hence, for all
shots, (9) can be expressed in matrix form as

Y = HAE, (10)

and since A is obtained from (8), the reconstruction of E,
assuming that the product of HA is full column rank, can be
obtained as

E =
(
ATHTHA

)−1
ATHTY. (11)

Using A from (8) and E from (11), F can be recovered as
in (6) (F = AE). Algorithm 1 summarizes the steps of the
proposed method. Notice that exact reconstruction of F, in
the absence of noise, can be achieved under the conditions
established in Theorem III.1, which depends on the number
of shots and the decimation factor ∆.

Algorithm 1 Non-iterative hyperspectral image reconstruction
1: MeasurementsY,Multispectral image FM , sensing matrix
2: H, and dimension of the subspace C.
3: Ẽ←VCA(FT

M , C)

4: A← F̃M ẼT
(
ẼẼT

)−1

5: E =
(
ATHTHA

)−1
ATHTY

6: F= AE
7: The hyperspectral image F

Theorem III.1. Noiseless exact reconstruction: Assume that
a spectral image F ∈ RL×MN has rank C ≤ min{L,MN},
such that it can be factorized as F = AE, where E ∈ RL×C

and A ∈ RC×MN . Also, consider that K ≥ C shots are taken
in the SPC, with the measurement matrix H ∈ RK×MN ,
independently drawn at random from a Rademacher distribu-
tion. Then, F can be exactly recovered from the compressed
measurements Y by recovering A and E from the solution
of (8) and (11), respectively, if a multispectral image of the
scene with C ≤ L

∆ is obtained as side information.

Proof: The proof of Theorem III.1 is in Appendix A.

IV. SIMULATIONS AND RESULTS

In this section, the performance of the proposed method is
evaluated using simulated and real data. The results shown are
the average of 10 trial runs using random coded apertures with
{-1,1} entries. All simulations were implemented in Matlab
2017a on an Intel Core i7 3.41Ghz CPU with 32 GB RAM.

A. Test 1: Performance of the proposed method

The first experiment demonstrates the exact recovery of
the non-iterative algorithm when the conditions of Theorem
III.1 are guaranteed. For this, the Jasper dataset of size

Fig. 2. Endmembers and abundance maps reconstruction in absence of noise
with the limit case L′ = K = 4 for Jasper Dataset

128× 128× 198, which contains C = 4 endmembers (Tree,
Water, Dirt and Road) was used [16]. Figure 2 shows the exact
reconstruction of endmembers and abundance maps obtained
with the proposed method in the limit case L′ = K = 4 given
in Theorem III.1. It can be seen that large peak-signal-to-
noise (PSNR) values are obtained for the abundance maps and
estimated endmembers exhibit a very low normalized mean-
squared error (NMSE). Notice that, Theorem III.1 guarantees
exact reconstruction in the absence of noise when, for this
data set, L′ ≥ 4 and K ≥ 4. However, it does not guarantee
accuracy for noisy measurements. For this reason, simulations
are performed to evaluate the reconstruction quality varying
the compression ratio in the SPC and the number of bands
L′ in the multispectral image for noisy scenarios. The com-
pression ratio for SPC is defined as

γ =
K

MN
. (12)

In addition, zero-mean Gaussian noise with 20 and 40 SNR
defined as SNR = 10 log10

‖Y‖2F
E‖N‖2F

was added to the compres-
sive measurements in (2) and the multispectral image (4),
where E denotes the expected value and N is the additive
noise. Figure 3 shows the quality of the reconstructions
measured in PSNR, for different compression ratios γ and
different number of spectral bands L′, i.e. L′ = 1 denotes a
panchromatic image and L′ = 3 is an RGB image. Note that,
as the number of bands in the multispectral image increases,
the quality of the reconstruction using the proposed algorithm
improves significantly. Otherwise, when the compression ratio
increases in the SPC, the quality does not increase signifi-
cantly, but it at least requires a compression ratio of γ = 0.01
to show a stable behavior.

Fig. 3. Reconstruction quality measured in PSNR for different levels of
compression and number of bands in the multispectral image (L′) for noisy
measurements (left) 40 dB and (right) 20 dB of SNR.

2019 27th European Signal Processing Conference (EUSIPCO)



Fig. 4. Reconstruction quality as a function of the compression ratio γ for
L′ = 3 and L′ = 6, for two different data sets.

B. Test 2: Comparison with iterative reconstruction methods

The Jasper image and an additional data cube of 256×256
pixels of spatial resolution and 30 spectral bands [17], were
used in this test. Unlike Jasper, this data set does not have a
defined rank; therefore, the noise considered in the experiment
is caused by imposing a low rank constraint in the proposed
method. The results are is compared with those obtained by
solving (5) using the Gradient Projection for Sparse Recon-
struction (GPSR) algorithm [18], for a basis representation
Ψ = Ψ1⊗Ψ2D, where Ψ1 is a 1D discrete cosine transform,
and Ψ2D is a 2D wavelet Symmlet 8 basis [7]. The regu-
larization parameter τ in (5) was determined using a cross-
validation strategy for each data set and different compression
ratios. It is worth noting that the proposed method does not
require this tunable parameter; it only needs the parameter C
that is related to the number of measurements, which is an
advantage in implementation details.

Figure 4 shows the average reconstruction quality of
the proposed method, measured in PSNR, compared with
GPSR solving (5), using 3-band (RGB) and 6 bands as side
information. Additionally, the compression rate was varied
up to 0.3, i.e. with a 30% of compressed measurements,

Fig. 5. Visual reconstruction comparison for L′ = 6 and γ = 0.1 with two
data sets.

Fig. 6. Spectral signatures of P1, P2, P3 and P4 of the two data set compared
with the reconstructed spectral points.

for both data sets. For this test, the measurements of data
set 1 (Jasper image) were contaminated with 30dB SNR
Gaussian noise. Notice that the proposed non-iterative method
outperforms the traditional side information method in up
to 10 dB. Additionally, the quality of the reconstruction in
GPSR algorithm increases as more shots are taken, in contrast
with the proposed method. This is based on the fact that the
proposed method is a non-iterative algorithm and provides
similar accuracy if the condition presented in Theorem III.1
is satisfied.

Additionally, Figure 5 shows the visual reconstruction
using an RGB mapping of the images, for L′ = 6 and
γ = 0.2. Notice that the proposed method provides more de-
tailed images as shown in the zoomed portions. Furthermore,
Figure 6 compares two spectral points per data set, for the
proposed and GPSR methods. It can be seen that the spectral
signatures obtained by the proposed method are closer to the
original.

Moreover, Table I compares the reconstruction time of the
proposed method compared to GPSR solving (5) for the same
configuration used in the previous test with 150 iterations

TABLE I. RECONSTRUCTION TIME FOR DIFFERENT DATA SETS AND
COMPRESSION RATIOS.

Reconstruction Time [s]
Proposed Method GPSR solving (5)

γ
Data set 1 Data set 2 Data set 1 Data set 2

L’=3 L’=6 L’=3 L’=6 L’=3 L’=6 L’=3 L’=6
0.001 0.07 0.07 0.02 0.03 106.32 107.65 16.24 16.37
0.002 0.07 0.09 0.02 0.03 109.44 111.456 17.72 17.07
0.007 0.08 0.08 0.02 0.03 143.57 154.23 22.77 22.49
0.01 0.08 0.08 0.02 0.04 158.69 168.41 25.03 24.69
0.02 0.10 0.10 0.02 0.04 225.22 256.42 34.16 34.45
0.05 0.14 0.14 0.05 0.06 420.66 455.17 62.42 64.01
0.09 0.19 0.21 0.07 0.09 646.35 660.41 97.19 101.70
0.10 0.21 0.22 0.08 0.09 761.42 774.91 107.74 106.12
0.20 0.35 0.35 0.14 0.15 1270.05 1304.48 191.25 188.89
0.30 0.47 0.48 0.20 0.21 1727.65 1799.94 280.32 268.08
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(which is the number of iterations needed to obtain good
reconstructions in the conventional method). The best time
for each case is shown in boldface. It can be seen that the
proposed method is significantly faster in comparison with
the iterative algorithm, specifically, it is up to 200 times faster
than GPSR.

V. CONCLUSION

A non-iterative algorithm for reconstructing high-
resolution spectral images for single pixel imaging with a
multispectral camera as side information has been proposed.
The proposed method enables exact reconstruction in the
absence of noise when the number of measurements for the
SPC and the number of bands in the multispectral image is
larger than the subspace dimensionality of the data. Moreover,
simulations show that the proposed method also performs well
with noisy measurements. Specifically, the proposed algo-
rithm is up to 200 times faster and overcomes reconstruction
algorithms based on side information. In particular, a gain of
up to 10 dB in image reconstruction quality for a level noise
of 30 dB of SNR was obtained with respect to the GPSR
algorithm.

APPENDIX A
PROOF OF THEOREM I

Proof: Given the single pixel measurements Y = HF
and the multispectral image FM = FD as side information,
where F ∈ RMN×L has rank C ≤ min{L,MN}. F can be
factorized as F = AE, where E ∈ RC×L is a full row rank
matrix, and A ∈ RMN×C is a full column rank matrix. Then,
with the structure of the decimation matrix shown in (3), we
have that

FM = AED, (13)

where D ∈ RL× L
∆ , since C ≤ L

∆ . The rank of the multispec-
tral image in (13) is

rank(FM ) = rank(FD) = rank(F). (14)

Therefore, it can be factorized as FM = AẼ, where Ẽ = ED
is a full row rank matrix, which can be obtained following
the lines 3-4 in Algorithm 1. Consequently, the matrix A
can be obtained as in (8) since the rows of Ẽ are linearly
independent, and ẼẼT is invertible.

After obtaining A, E can be recovered using (11). It is
necessary to show that the matrix HA is full column rank.
Since H ∈ {−1, 1}K×MN is drawn from a Rademacher dis-
tribution, its rows are general linear positions with probability
one [19]. Additionally, as K > C, the sensing matrix Y spans
the range of F, almost sure. Therefore, (10) can be written
as

Y = HAE, (15)
where A is already known because it was calculated in a
previous step. Since the rank of the product of two full rank
matrices is the minimum rank matrix, we have that HA is
full column rank, therefore, the matrix E can be calculated
as in (11). Thus, the result holds.
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