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Abstract—Phase Retrieval (PR) in X-ray Crystallography (XC)
is an inverse problem that consists on recovering an image from
phaseless data. Recently, it has been shown that an image in
XC can be sparsely represented in the Fourier domain. This fact
implies that the number of required measurements to retrieve
the phase in XC is determined by the sparsity, which is much
smaller than the size of the image. However, the computational
complexity to retrieve the phase still depends on the image size,
implying more time to solve this problem in XC. Therefore,
this work proposes a reconstruction algorithm that exploits the
sparsity of the image by grouping sets of pixels of its sparse
representation, called super-pixels, in order to reduce the total
number of unknowns in the inverse problem. The proposed
recovery methodology leads to a reduction in time of at least 80%
and improves the reconstruction quality in up to 6% in terms
of the Structural Similarity Index Measure (SSIM) compared to
state-of-art counterparts.

I. INTRODUCTION

Phase retrieval (PR) is an inverse problem which consists
on recovering an image from phaseless measurements. This
problem appears in a wide range of engineering and physics
applications. To name a few, optical imaging [1] , astronomy
[2], coherent diffraction imaging [3] and X-ray crystallography
(XC) [4]. The latter is the object of study in this work. XC is
an experimental tecnique to determine the three-dimensional
(3D) structure of a crystal [5]. Specifically, the crystal can be
uniquely identified by means of the phase of its diffraction
patterns [6]. Further, because the phase of the diffraction
patterns cannot be directly measured, different methods in the
state-of-the-art have been developed to recover it from the
intensity of the diffraction patterns [7], [8].

The authors of [8] have shown that the phase can be more
efficiently recovered (up to a global unimodular constant) from
measurements acquired with architectures including an optical
element known as coded aperture, which is assumed to be a
random matrix. Mathematically, the PR problem in XC from
coded diffraction patterns consists on recovering an image x ∈
Cn from the phaseless data y = |〈ai,x〉|2, where ai ∈ Cn for
i = 1, · · · , m̂ are the sampling vectors.

In section II, we will show that the image in XC can be
sparsely represented in the Fourier domain, that is, ‖θ‖0 =
k � n where θ = Fx, and ‖·‖0 is the `0-pseudonorm. This
fact implies that the number of required coded measurements
to retrieve the phase in XC is determined by the sparsity,
which is much smaller than the size of the image. However,
the computational complexity to solve the PR problem still
depends on the image size n, implying long reconstruction
times for XC. In fact, supposing a signal with size greater than

n, with sparsity k, the computational cost of its reconstruction
will be higher compared with that of a signal of size n.

This paper proposes a reconstruction algorithm that exploits
the sparsity k of the image by grouping sets of pixels,
called super-pixels, in the sparse representation to substantially
reduce the total number of unknowns in the inverse problem.
These super-pixels are determined from the acquired data by
grouping zero coefficients of the sparse representation of the
image. This fact leads to an improvement in the reconstruction
quality and a reduction in the reconstruction time since the
sparse representation of a high-spatial-resolution image is
mapped to a lower spatial dimension reducing the number of
unknowns. The super-pixel concept has been previously used
to compress images as in simple linear iterative clustering [9]
and compressive spectral imaging [10]. Also, it is worth to
mention that these state-of-the-art works operate directly over
the scene, in contrast, our methodology focuses on processing
the sparse representation making this paper first in its kind.
Further, a super-pixel approach has not been up to date
extended to the PR problem.

Numerical simulations show that the super-pixel method-
ology attains a reconstruction time reduction of at least 80%
compared with traditional sparse-based reconstruction meth-
ods. Also, we validate through simulations that the proposed
approach improves the reconstruction quality in up to 6%
in terms of the Structural Similarity Index Measure (SSIM)
compared with sparse-based reconstruction methodologies.

Notation. In the remainder, we denote (·)T , (·) and (·)H as
the transpose, conjugate, and conjugate transpose operations,
respectively. The ceiling operation b·c returns the greater
integer, smaller than or equal to the given number. For vectors
‖x‖p is the usual `p norm. Also, ‖·‖0 denotes the `0 pseudo-
norm counting the number of nonzero entries. Further, we
will denote E[·] as the expected value and operator card(B)
represents cardinality of B.

II. PROBLEM FORMULATION

X-ray crystallography is a technique used in material anal-
ysis to determine the 3D structure of a crystal [6]. A recent
proposed acquisition system for XC is shown in Fig. 1, where
the object of interest is illuminated by an X-ray source and
modulated by a coded aperture [11]. As a result, a coded
diffraction pattern (CDP) is produced.

Notice that, if we change the spatial configuration of the
coded aperture, this acquisition system allows to acquire mul-
tiple projections of the scene. Mathematically, the acquisition
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Fig. 1: Illustrative configuration to acquire coded diffraction patterns
in XC.

process of the coded system illustrated in Fig. 1 can be
modeled as

y` = |FD`x|2, ` = 1, · · · , L, (1)

where F ∈ Cn×n is the discrete Fourier transform matrix, | · |2
denotes the element-wise absolute-squared value, x ∈ Cn is
the image to recover, D` is a diagonal matrix that models the
coded aperture at the `-th projection, and L is the number of
projections. Further, defining y = [yT1 , · · · , yTL]T ∈ Rm=nL

and the matrix A = [D1F, · · · ,DLF]
T , we can rewrite the

quadratic model in (1) as
y = |Ax|2, (2)

where each row of A is given by ai = Drifui with ri =
b(i− 1)/nc+ 1, ui = [(i− 1) mod n] + 1, and fui the rows
of F, for i = 1 · · ·nL.

Fig. 2 illustrates typical observed |Fx|2 in XC. In particular,
the magnitude of the Fourier transform of a crystal of cytidine
is presented. The white and black pixels represent low and
high-intensity elements, respectively. Thus, it shows that the
image of interest x in XC can be sparsely represented in the
Fourier domain, that is, Fx = θ where ‖θ‖0 = k � n.

Projection 1 Projection 2

Fig. 2: Real |Fx|2 in XC, where white and black pixels represent
low and high intensity elements, respectively.

Considering this previous observation, and the coded
diffraction model in (2), the image x in XC can be recon-
structed as

min
θ∈Cn

f(θ) = ‖√y − |AFHθ|‖22
subject to ‖θ‖0 ≤ k, (3)

where
√
· denotes the element-wise squared root of a vector.

Observe that, the image of interest can then be estimated as
x = FHθ. However, the computational complexity to solve (3)

still depends on the image size n, implying long reconstruction
times.

To alleviate the time complexity of PR in XC we propose to
design a decimation matrix M ∈ Rr×n with r < n, to build
super-pixels which are groups of zero coefficients of θ. In
fact, using the matrix M, the sparse representation of a high-
spatial-resolution image is mapped to one of lower resolution,
reducing the total number of unknowns and therefore the
reconstruction time. Mathematically, introducing the effect of
the decimation matrix M, we can reformulate (3) as

min
θ∈Cn

f(θ) = ‖√y − |AFHMTMθ|‖22
subject to ‖θ‖0 ≤ k. (4)

Notice that, the surrogate optimization problem in (4) is
equivalent to (3), because the vector θ is assumed to be sparse,
and M is forming groups of zero coefficients which implies
that FHMTMθ = FHθ, preserving the sparsity level. Thus,
defining Mθ = θ̂ ∈ Cr and Â = AFHMT , we obtain that
(4) can be rewritten as

min
θ̂∈Cr

f(θ̂) = ‖√y − |Âθ̂|‖22

subject to ‖θ̂‖0 ≤ k. (5)

Considering (5), the following section develops a strategy to
design the matrix M. We call our decimation strategy multi-
resolution because the non-zero coefficients are not decimated
and the zero coefficients are decimated in an irregular fashion,
leading to super-pixels of different sizes, as it will be explained
in Section III.

III. MULTI-RESOLUTION STRATEGY

This section describes the design principles of the decima-
tion matrix M in two steps as follows:
(a) Non-zero coefficient estimation: we statistically estimate

the non-zero coefficients of θ, from the coded measure-
ments in (2). In fact, the coded apertures can be optimized
to attain the best estimation of the non-zero coefficients
of θ.

(b) Building super-pixels: From the outcome of the first step,
rectangular super-pixels of different sizes can be formed
by grouping neighboring zero coefficients of θ into super-
pixels.

A. Non-zero coefficients estimation

In order to estimate the non-zero coefficients of θ we extend
the strategy developed in [12] to CDP. But first, we specify that
the entries of each matrix D` are i.i.d. copies of an admissible
random variable d defined as follows.

Definition 1 (Admissible random variable). A discrete random
variable obeying |d| ≤ 1 almost sure, is said to be admissible.

Considering that D` for ` = 1, · · · , L, are random matrices,
define Zr,s := yr|br,s|2, 1 ≤ r ≤ m, 1 ≤ s ≤ n, where br,s is
the element at row r and column s of a matrix B = AFH .
Then, we have that

E[Zq,p] = c1(n− 1)‖x‖22 + c2|θp|2, (6)
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where c1, c2 > 0 are constants depending on d. Also, given the
fact that θ is sparse, θp 6= 0 or θp = 0. Then it is clear from
(6), as long as the constant c2 is sufficiently large, the non-zero
coefficients of θ can be identified in this way. Thus, the k non-
zero coefficients of θ are the k largest indices of Zq,p. In fact,
we are interested in optimizing the set of coded apertures in
order to obtain the best estimation of the non-zero coefficients
of θ. Specifically, the following lemma theoretically proves (6)
and establishes that an admissible random variable d satisfying
E[d],E[d] 6= 0 attains the best performance.
Lemma 1. Considering the coded measurements y in (2)
and Definition 1, an admissible random variable d satisfying
E[d],E[d] 6= 0 attains the best performance for estimating the
non-zero coefficients of θ.

Proof. See Appendix A.
B. Building super-pixels

In this section, we describe how to group sets of zero coeffi-
cients of θ into super-pixels of different sizes. More precisely,
once the non-zero coefficients are estimated as explained in
Section III-A, we are able to decimate θ. For that purpose,
we modified a decimation algorithm introduced in [10]. The
design details of the decimation matrix are summarized in
Algorithm 1. Notice that a matrix version θ̃ of θ is required
in Line 3 to create super-pixels. Then, Algorithm 1 generates a
random point (̂i, ĵ) in Line 8 and creates a set B that contains
the spatial coordinates of a 2η×2η super-pixel whose top-left
corner is the point (̂i, ĵ). Therefore, Algorithm 1 calculates
the average of the normalized intensities of θ̃B in order to
determine the similarity with each point of θ̃ contained in
B, considering as metric its mean squared error, as shown
in Line 11. Thus, this spatial similarity is used to create
the super-pixels of size 2η × 2η , as long as, the maximum
mean squared error is smaller than the fixed threshold σ.
Further, it is important to remark that the rows of M are
normalized by the cardinality of B, as shown in Line 13. This
decimation approach allows to group the zero coefficients of
the sparse representation, which leads to reducing the number
of unknowns.

Figure 3 shows an example of a decimation grid of the
sparse image θ̃. Note that, the non-zero coefficients are not
decimated.

IV. RECONSTRUCTION ALGORITHM

This section presents the proposed reconstruction algorithm
that exploits the sparsity of θ in order to substantially reduce
the total number of unknowns in XC. More precisely, consider-
ing the fact that state-of-the-art algorithms cannot be directly
applied to solve (5), then a modified version of the Sparse
Phase Retrieval via Smoothing Function (SPRSF) introduced
in [13] is presented. Specifically, the proposed method is
summarized in Algorithm 2.

Algorithm 2 starts with a proper initialization, which is
summarized from Line 2 to 7. Note that in Line 2, Algorithm 2
estimates the non-zero coefficients of θ following the method-
ology explained in Section III-A. In this way, the matrix M can
be created, as shown in Line 3 which allows to calculate the

Algorithm 1 Algorithm to determine the matrix M

1: Input: Sparse signal θ, threshold parameter σ, super-pixel
size parameter η.

2: Let s = [2η, 2η−1, . . . , 1] be super-pixel sizes and initialize α =
0, ρ = 0.

3: θ̃ ∈ RN1×N2 ← matrix version of θ
4: Define the set of coordinate points as I = {(i, j)|∀i, j ∈
{1, · · · , N1}, {1, · · · , N2}}

5: while card(I) > 0 do
6: Î = I Generate a new set of available points
7: while card(Î) > 0 do
8: Generate a random point (̂i, ĵ) ∈ Î
9: Build a super-pixel B = {(i, j)|i = [̂i, . . . , î + s(α)], j =

[ĵ, . . . , ĵ+s(α)]} of size s(α) and a new top-left corner point (̂i, ĵ) ∈ Î
10: p← E{θ̃B} . Calculate the average normalized of θ̂ in B
11: if max(MSE(p, θ̃B)) < σ then
12: Γ← 0N1×N2

13: Γ(i,j) ← 1
card(B) for (i, j) ∈ B . Super-pixel indicator

14: (M)ρ = vec(Γ) . Assigning new row to M
15: ρ = ρ+ 1 . Update super-pixels counter
16: I = I − B . Update available points
17: Î = Î − B . Update eligible top-left points
18: else
19: Î = Î − (̂i, ĵ) . Remove the corner point (̂i, ĵ) ∈ Î
20: α = α+ 1 . Change super-pixel size index
21: Output: matrix M

Decimation
region: super-pixels

Preserved
pixels

Fig. 3: Illustration of the multi-resolution strategy by grouping sets
of zero-pixels of the sparse representation. Non-zero pixels are not
grouped.

decimated sparse version θe in Line 7. Lastly, under successive
refinements based upon a sequence of gradient iterations θ̂e
is estimated in Line 8. These gradient iterations can be used
with traditional sparse-based reconstructions methods such as
Sparse Wirtinger flow (SWF) [12], Sparse Truncated Ampli-
tude flow (SPARTA) [14] or SPRSF [13]. Notice that, the
computation of the matrix Â ∈ Cm×r in Line 4 is needed. In
fact, Â allows Algorithm 2 to reduce the reconstruction time,
because r � n. Finally, the overall computational complexity
of Algorithm 2 is O(Tr2) in contrast to O(Tn2) of algorithms
that do not decimate the sparse representation.
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Algorithm 2 Multi-resolution reconstruction method for XC

1: Input: Data {(ai;yi)}mi=1, sparsity level k. The step size
τ ∈ (0, 1), control variables γ, γ1 ∈ (0, 1), µ(0) ∈ R++,
number of iterations T , threshold parameter σ, super-pixel
size parameter η.

2: Initialization: S0 is set to be the set of k largest indices
of { 1

m

∑m
i=1 q

2
i a

2
i,j}1≤j≤n, with qi =

√
yi.

3: M← Algorithm 1 (S0, σ, η )
4: Compute Â = [âT1 , · · · , âTnL]H = AFHMT

5: Let θ̃
(0)

be the leading eigenvector of Y :=
1
m

∑
i∈I0
√
qi

âi,S0 â
H
i,S0

‖âi,S0‖
2
2

6: Define the initial point as θ̂
(0)

:= λ0θ̃
(0)

, where λ0 :=√∑m
i=1 q

2
i

m .

7: θe ←Mθ̂
(0)

8: θ̂e ← reconstruction algorithm(θe, Â,y)
9: Output: FHMT θ̂e

V. SIMULATIONS AND RESULTS

In this section, the performance of the proposed recon-
struction algorithm and the decimation strategy are evaluated
through three different tests: first, we determine the perfor-
mance of some admissible random variables to estimate the
non-zero coefficients of θ. Then, we compare the recon-
struction time of the proposed method against state-of-the-art
alternatives, and finally we examine the reconstruction quality
attained with the proposed algorithm in terms of the Structural
Similarity Index Measure (SSIM) due to it is regarded as
a reliable indicator of image quality degradation, measuring
from error visibility to structural similarity.

For the first test, the complex signal is generated for various
values of n ∈ [128, 4096]. For tests two and three, the
complex signal is x ∼ N (0, I1024)+jN (0, I1024). The default
values of parameters of Algorithm 2 were determined using
a cross-validation strategy. They were fixed as τ = 0.9,
γ = 5, γ1 = 0.015, µ(0) = 0.04 T = 500, η = 4,
σ = 1e−3. Furthermore, in order to validate that our super-
pixel approach can be used with any sparse reconstruction
algorithm, we modified two algorithms of the state-of-the-art
SWF and SPARTA, to introduce the decimation matrix M.

A. Non-zero coefficients estimation

This section presents the performance to estimate the non-
zero coefficients of θ based on admissible random variables
given by

d1 =


−1 prob. 1/4
1 prob. 1/4
j prob. 1/4
−j prob. 1/4

, d2 =

{
0 prob. 1/2
1 prob. 1/2 , d3 =

{
−1 prob. 1/2
1 prob. 1/2 .

(7)
We performed 100 trials to empirically investigate the

success rate of the admissible random variables in (7) to
estimate the non-zero coefficients of θ as explained in Section
III-A. The numerical results are summarized in Fig. 4 where
the color represents the estimation percentage obtained for the

different admissible random variables in (7). In particular, note
that d2 attains the highest performance compared with d1 and
d3. This observation validates the theoretical result established
in Lemma 1, because E[d2] 6= 0.
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Fig. 4: Performance of some admissible random variables estimating
the non-zero coefficients of the sparse representation.

B. Reconstruction time comparison

This section summarizes the reconstruction time compar-
ison between the proposed algorithm and non-decimation-
based approaches. Specifically, we compare Algorithm 2 with
its non-decimation-based version proposed in [13]. Also, to
demonstrate that our super-pixel methodology is independent
of the reconstruction methodology, the algorithms SWF and
SPARTA were adapted to solve (5). Specifically, Line 8 in
Algorithm 2 can be replaced by SPARTA or SWF to solve
(5). Figure 5 shows the attained results as a function of the
compression rate. From Fig. 5 we can find that Algorithm
2 presents a reconstruction time reduction in at least 80%
compared with the original version. Also, the decimation-
based versions of SPARTA and SWF report a reconstruction
time reduction with respect to their non-decimation-based
versions of at least 77% and 84%, respectively.
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Fig. 5: Reconstruction time of the decimation-based algorithms vs
the sparsity level of θ.

C. Reconstruction quality

This section presents the reconstruction quality attained with
the proposed decimation algorithm, summarized in Fig. 6.
Observe that the proposed reconstruction algorithm attains
a gain of up to 6% in terms of the Structural Similarity
Index Measure (SSIM) compared with the traditional method.
Moreover, the decimation-based versions of SPARTA and
SWF show an improvement in the reconstruction quality in
up to 5% and 3% in terms of SSIM, respectively. This
comes from the fact that the super-pixel approach reduces the
number of unknowns implying that the non-zero coefficients
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are better estimated compared with traditional sparse-based
reconstruction methods.
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Fig. 6: Reconstruction quality attained with the decimation-based
reconstruction algorithm.

VI. CONCLUSIONS

This work presented an algorithm to solve the phase re-
trieval in X-ray crystallography that is able to exploit the
sparsity of θ to reduce the total number of unknowns in the
inverse problem. This algorithm groups sets of zero-valued
pixels, called super-pixels, in the sparse representation to map
a high-spatial-resolution image to one of lower resolution,
reducing the total number of unknowns. This fact leads to a
reconstruction time reduction of at least 80% and improves the
reconstruction quality in up to 6% in terms of the Structural
Similarity Index Measure (SSIM). Also, through simulations
we validated that our super-pixel approach can be used by
traditional sparse-based reconstruction methods, to reduce the
reconstruction time in XC.
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APPENDIX A
PROOF OF LEMMA 1

For two integers a and b we use a
n≡ b to denote congruence

of a and b modulo n (n divides a−b). Set ω = e
2πj
n to be the

nth root of unity so that fi = [ω−0(i−1), · · · , ω−(n−1)(i−1)].
Then, taking zp = 1

n

∑n
q=1 Zq,p we obtain that

zp =
n∑

a,b,c,e=1

dadbdcdexaxbω
(c−e)(p−1)

(
1

n

n∑
i=1

ω(b−a+e−c)(i−1)

)

=
n∑
a=1

n∑
b=1

n∑
c=1

n∑
e=1

dadbdcdexaxbω
(c−e)(p−1)

1{b+e
n
≡a+c},

(8)

where the notation 1{b+e
n
≡a+c} means that

1
n

∑n
i=1 ω

(b−a+e−c)(i−1) is different from zero, in this
case it is equal to 1, only when the condition b + e

n≡ a + c
is satisfied. Define µ = E[d] and h = d− µ. Therefore, from
(8) we have that E[zp] can be written as

n∑
a,b,c,e=1

(
E
[
hahbhche

]
xaxb + |µ|4xaxb

)
ω(c−e)(p−1)

1
{b+e

n
≡a+c}

.

(9)

Observe that E
[
hahbhche

]
= 0 unless (a = e, b = c),

or (a = b, c = e, a 6= c), where these two conditions also
satisfy that b + e

n≡ a + c. Thus, defining E
[
hahbhche

]
=

E
[
|ha|2|hb|2

]
= v ≤ 1 we have that

• (a = e, b = c): Then, the term in (9) can be expressed as(
n∑
a=1

vω−(a−1)(p−1)xa

)(
n∑
b=1

vω(b−1)(p−1)xb

)
= v2|θp|2.

(10)
• (a = b, c = e, a 6= c): Thus, the term in (9) can be

rewritten as
n∑
a=1

(
v|xa|2

) n∑
c6=a

v = v2(n− 1)‖x‖22. (11)

Thus, by combining (9), (10), and (11) it can be concluded
that

E[zp] = v2(n− 1)‖x‖22 + (v2 + |µ|4)|θp|2. (12)

Since v is always greater than zero, it is clear from (12)
that when E[d] 6= 0, the non-zero coefficients can be better
estimated.
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