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Abstract—A novel inverse tone mapping network, called “iTM-
Net”, is proposed in this paper. For training iTM-Net, we also
propose a novel loss function considering the pixel distribution
of HDR images. In inverse tone mapping with CNNs, we first
point out that training CNNs with a standard loss function
causes a problem, due to the distribution of HDR images. To
overcome the problem, the novel loss function non-linearly tone-
maps target HDR images into LDR ones, on the basis of a
tone mapping operator, and then the distance between the tone-
mapped image and a predicted one is calculated. The proposed
loss function enables us not only to normalize HDR images but
also to distribute pixel values of HDR images, like LDR ones.
Experimental results show that HDR images predicted by the
proposed iTM-Net have higher-quality than HDR ones predicted
by conventional inverse tone mapping methods including state-of-
the-arts, in terms of both HDR-VDP-2.2 and PU encoding + MS-
SSIM. In addition, compared with loss functions not considering
the HDR pixel distribution, the proposed loss function is shown
to improve the performance of CNNs.

Index Terms—Inverse tone mapping, High dynamic range
imaging, Loss function, Deep learning, Convolutional neural
networks

I. INTRODUCTION

The low dynamic range (LDR) of modern digital cameras
is a major factor that prevents cameras from capturing images
as well as human vision. This is due to the limited dynamic
range that imaging sensors have. For this reason, the interest
of high dynamic range (HDR) imaging has been increasing.

To generate an HDR image from a single LDR image, var-
ious research works on inverse tone mapping have so far been
reported [1]–[12]. Since LDR images are distorted by sensor
saturation and a non-linear camera response function (CRF),
the objective of inverse tone mapping can be separated into
two issues: saturation recovery and linearization. Traditional
ways for inverse tone mapping are based on expanding the
dynamic range of input LDR images by using a fixed function
or a specific parameterized function [1]–[7]. However, inverse
tone mapping without prior knowledge is generally an ill-
posed problem because of the following two reasons: pixel
values might be lost by sensor saturation, and a CRF used
for photographing is unknown. Hence, HDR images produced
by these methods have limited quality. To obtain high-quality
HDR images, inverse tone mapping methods based on deep
learning have recently attracted attention.

Several convolutional neural network (CNN) based inverse
tone mapping methods have so far been proposed [10]–[12].
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The CNN-based methods significantly improve the perfor-
mance of inverse tone mapping. In [11] and [10], CNNs are
utilized for saturation recovery, but these methods employ
a linearization method that is not based on deep learning.
Although Marnerides et al. [12] tackled the linearization
problem by training a CNN with simply normalized HDR
images by using the min-max normalization, the performance
is still limited because most pixel values of the normalized
images distributed in a narrow range. This is due to the non-
linear relation between LDR and HDR images.

Thus, in this paper, we propose a novel inverse tone
mapping network, called iTM-Net. Similarly to [12], we aim
to obtain relative luminance by linearizing LDR images with
iTM-Net. To realize this, we also propose a novel loss function
considering the non-linear relation between LDR and HDR
ones. In the novel loss function, target HDR images are tone-
mapped into LDR ones by using an invertible tone mapping
operator, and then the distance between the tone-mapped
image and a predicted one is calculated. The proposed loss
function enables us not only to normalize HDR images but
also to distribute pixel values of HDR images, like LDR ones.

In an experiment, the proposed method was compared with
state-of-the-art inverse tone mapping methods. Experimen-
tal results illustrate that the proposed method outperforms
the conventional methods in terms of two objective quality
metrics: HDR-VDP-2.2 and PU encoding + MS-SSIM. In
addition, the proposed loss function is shown to improve the
performance of CNNs, compared with standard loss functions
not considering the non-linear relation.

II. RELATED WORK

The goal of inverse tone mapping is to restore absolute or
relative luminance of a scene, from a single LDR image. Since
LDR images are distorted by sensor saturation and a non-linear
CRF, this objective can be separated into two issues: saturation
recovery and linearization.

Many inverse tone mapping methods have already been
studied [1]–[7], [10]–[12]. Especially in those methods, CNN-
based methods [10]–[12] have recently attracted attention
because of their effectiveness. Eilertsen et al. [11] aim to
reconstruct saturated areas in input LDR images via a CNN.
Predicted pixel values are combined with an input LDR image,
which is linearized by using a fixed function not considering
CRFs, in order to produce an HDR image. Endo et al. [10]
have proposed a CNN based method that produces a stack
of differently exposed images from a single LDR image. The
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generated images are linearized and fused by using an existing
stack-based method such as Debevec’s method [13]. These two
methods enable us to recover saturated regions in images, but
the linearization problem still remains.

In the work by Marnerides et al. [12], they tackled the
linearization problem, and sought to directly produce HDR im-
ages by a CNN. For calculating prediction loss in training the
CNN, all HDR images are simply normalized into the range
of [0, 1], by using the min-max normalization. However, the
use of the normalized HDR images for calculating prediction
loss causes a problem that most pixel values of the normalized
images are distributed in a narrow range. This is due to the
non-linear relation between LDR and HDR images, and so the
image statistics of LDR and HDR ones differ considerably
as pointed out in [11]. Therefore, we aim to improve the
performance of CNN-based inverse tone mapping, by using
a novel loss function considering the non-linear relation for
learning HDR images.

III. PROPOSED INVERSE TONE MAPPING

Figure 1 shows an overview of our training procedure and
predicting procedure. In the training, all input LDR images x
are generated from target HDR images E by using various vir-
tual cameras f̃ [11]. For calculating loss between a predicted
image ŷ and a target HDR one E, a tone mapping function f̂ ,
which is generally a non-linear one, is applied to E.

After the training, various LDR images are applied to the
proposed CNN as input images, where the CNN then predicts
tone-mapped versions of HDR images. The linearization is
done by mapping the predicted images ŷ by inverse tone map-
ping function f̂−1. Detailed training conditions are described
in Section III-D.

A. Loss function

In literature [12], a loss function for training a CNN is
defined by using the L1-distance L1 and the cosine similarity

Lcos. L1 and Lcos are calculated as:

L1(ŷ, E) =
1

P

∑
i,j

‖Ei,j − ŷi,j‖1, (1)

Lcos(ŷ, E) = 1− 1

P

∑
i,j

Ei,j · ŷi,j
‖Ei,j‖2‖ŷi,j‖2 , (2)

where Ei,j and ŷi,j denote an RGB pixel vector at pixel (i, j)
in HDR image E and predicted image ŷ, respectively, and P
is the total number of pixels. By using eqs. (1) and (2), the
loss function utilized for ExpandNet [12] is given by

LExpand(ŷ, E) = L1(ŷ,m(E)) + λLcos(ŷ,m(E)), (3)

where m(E) denotes the min-max normalization which simply
normalizes E into the range of [0, 1], and λ is a constant factor
that adjusts the contribution of the cosine similarity. However,
the min-max normalization is unsuitable for learning HDR
images because pixel values of HDR images are non-uniformly
distributed in an extremely wide range [11], unlike LDR ones.

For this reason, we utilize an invertible tone mapping
operator f̂(·), which is designed to transform HDR images
into LDR ones, instead of the min-max normalization m(·).
For example, the L1-distance with f̂(·) is calculated by

LiTM(ŷ, E) = L1(ŷ, f̂(E)). (4)

In this paper, Reinhard’s global operator [14] is utilized as
f̂(·), where the operator transforms HDR images into high-
quality LDR ones, and it has an inverse function. By using
the luminance matrix LE of E, the operator is given by the
following equations:

f̂(E) = (ĝ(LE)� LE)� E, (5)

ĝ(LE) = LX � (1 + LX), (6)

LX =
a

G(LE)
LE . (7)

where � and � mean pixel-wise multiplication and division,
respectively. The parameter a ∈ [0, 1] determines the bright-
ness of an output image f̂(E), and G(LE) is the geometric
mean of LE given by

G(LE) = exp

⎛
⎝ 1

P

∑
i,j

log
(
max

(
LEi,j , ε

))
⎞
⎠, (8)

where ε is a small value to avoid singularities at LEi,j = 0.
Eq. (7) enables us to calibrate HDR images by adjusting the
geometric mean of each HDR image to a, and eq. (6) allows
us to distribute pixel values of HDR images, like those of LDR
ones. Since f̂ is invertible, HDR images can be predicted by
using an inverse tone mapping operator f̂ , as shown in the
next Section.

B. Prediction

The proposed CNN generates tone-mapped versions of
HDR images E because the CNN is trained by using the loss
function shown in eq. (4). Hence, predicting HDR images is
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done by applying the inverse tone mapping function f̂−1 to
predicted image ŷ, as

Ê = f̂−1(ŷ) = (ĝ−1(Lŷ)� Lŷ)� ŷ, (9)

ĝ−1(Lŷ) = Lŷ � (1− Lŷ), (10)

where Lŷ is the luminance of ŷ. Note that eq. (7) can be
ignored in the inverse tone mapping since our goal is to obtain
relative luminance.

C. iTM-Net architecture

Figure 2 shows the overall network architecture of iTM-Net.
The architecture consists of three networks: a local encoder,
a global encoder, and a decoder. The local encoder and the
decoder in the proposed method are almost the same as those
used in U-Net [15]. Concatenated skip connections between
the local encoder and the decoder are also utilized like in U-
Net. Although U-Net works very well for various image-to-
image translation problems, its use for inverse tone mapping
often causes distortions in output images due to its network
architecture not handling global image information. For this
reason, we utilize the global encoder and combine features
extracted by both encoders to prevent the distortions. The input
for the local encoder is a P = H×W pixels 24-bit color LDR
image. For the global encoder, the input image is resized to a
fixed size (128× 128).

iTM-Net has five types of layers as shown in Fig. 2:
3× 3 Conv.+ BN + ReLU which calculates a 3 × 3 convo-

lution with a stride of 1 and a padding of 1. After
convolution, batch normalization [16] and the rectified
linear unit activation function [17] (ReLU) are applied.
In the local encoder and the decoder, two adjacent 3× 3
Conv.+ BN + ReLU layers will have the same number K
of filters. From the first two layers to the last ones, the
numbers of filters are K = 32, 64, 128, 256, 512, 256,
128, 64, and 32, respectively. In the global encoder, all
layers have 64 filters.

2× 2 Max pool which downsamples feature maps by max
pooling with a kernel size of 2× 2 and a stride of 2.

4× 4 Transposed Conv. + BN + ReLU which calculates a
4× 4 convolution with a stride of 1/2 and a padding of
1. After convolution, BN and ReLU are applied. From
the first layer to the last one, the numbers of filters are
K = 256, 128, 64, and 32, respectively.

1× 1 Conv. + ReLU which calculates a 1 × 1 convolution
with a stride of 1 and a padding of 1. After convolution,
ReLU is applied. The number of filters in the layer is 3.

4× 4 Conv. + BN + ReLU (w/o padding) which calculates
a 4×4 convolution without padding. The number of filters
in the layer is 64.

D. Training

Numerous LDR images taken under various conditions, x,
and corresponding HDR images, E, are needed to train iTM-
Net. To prepare a sufficient amount of training data, we utilize
various virtual cameras to generate x from HDR images E

[11]. For training, 831 HDR images were collected from online
available databases [18]–[23].

The training procedure of our CNN is shown as follows.
i Select 16 HDR images from the 831 HDR images at

random.
ii Generate 16 pairs of an input image and its target one

(x, Ẽ) from each HDR image. Each pair is generated in
accordance with the following steps.
(a) Crop HDR image E to an image patch Ẽ at N ×N

pixels. The size N is given as a product of a uniform
random number in the range [0.2, 0.6] and the length
of the short side of E. In addition, the position of
the patch in E is also determined at random.

(b) Resize Ẽ to 256× 256 pixels.
(c) Flip Ẽ horizontally or vertically with a probability

of 0.5.
(d) Calculate exposure X from Ẽ by X = Δt(v) · Ẽ,

where pixel values larger than 1 are clipped. Shutter
speed Δt is calculated as Δt(v) = 0.18 · 2v/G(LẼ)
as in [14] by using a uniform random number v in
the range [−2, 2]. G(LẼ) is the geometric mean of
luminance of Ẽ.

(e) Generate an input LDR image x from X by using a
virtual camera f̃ , as

x = f̃(X) = (g̃(LX)� LX)�X, (11)

g̃(LX) = (1 + η)(Lγ
X � (Lγ

X + η)), (12)

where η and γ are random numbers that follow
normal distributions with a mean of 0.6 and a
variance of 0.1 and with a mean of 0.9 and a
variance of 0.1, respectively. LX is luminance of X ,
and exponentiation Lγ

X is calculated as a pixel-wise
operation.

iii Predict 16 LDR images ŷ from 16 input LDR images x
by using iTM-Net.

iv Evaluate loss between predicted images ŷ and target
images Ẽ by using eq. (4) with Reinhard’s global operator
f̂ . Here, a = 0.18 is used in (7).

v Update filter weights ω and biases b in the CNN by back-
propagation.

In our experiments, iTM-Net were trained with 500 epochs,
where the above procedure was repeated 51 times in each
epoch. In addition, each HDR image had only one chance
to be selected, in Step i in each epoch. He’s method [24]
was used for initializing of iTM-Net. In addition, the Adam
optimizer [25] was utilized for optimization, where parameters
in Adam were set as α = 0.002, β1 = 0.9, and β2 = 0.999.

IV. SIMULATION

We evaluated the effectiveness of the proposed method by
using two objective quality metrics.

A. Simulation conditions

The quality of generated HDR images Ê by using iTM-Net
was evaluated by two objective quality metrics: HDR-VDP-
2.2 [26], and PU encoding [27] with MS-SSIM [28] which

2019 27th European Signal Processing Conference (EUSIPCO)



In
pu

t i
m

ag
e

O
ut

pu
t i

m
ag

e

3 ch. 32
64

128
256 256 512

Concatenation

64

R
ep

lic
at

io
n 

&
C

on
ca

te
na

tio
n

In
pu

t i
m

ag
e 

(r
es

iz
ed

) 64

64
64

64

64

Local encoder

Global encoder

Decoder

256 256
128 128

64 64
32 32

3 ch.

3 ch.

Conv. + BN + ReLU Max pool

Conv. + BN + ReLU (w/o padding)

Conv. + ReLUTransposed conv. + BN + ReLU

3
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utilize an original HDR image E as a reference. Literature
[29] have shown that these metrics are suitable for evaluating
the quality of HDR images.

The two metrics are designed for evaluating the difference
between two HDR images that have absolute luminance of a
scene. Such HDR images, namely HDR ones having absolute
luminance, are only in the dataset [20]. Hence, 20 HDR images
selected from the dataset [20] were used for the experiment.
Note that they were not used for training. Input LDR images
x were generated in accordance with Steps ii(d) and ii(e)
in Section III-D. In addition, predicted HDR images Ê were
scaled to match the range of Ê with that of the original HDR
image E because inverse tone mapping methods can only
predict HDR images having relative luminance.

The proposed method is compared with four methods in-
cluding the state-of-the-art ones: direct inverse tone mapping
operator (Direct ITMO) [7], pseudo-multi-exposure-based tone
fusion (PMET) [5], ExpandNet [12], iTM-Net trained by the
standard L1-loss L1(ŷ,m(E)) without tone mapping (Pro-
posed w/o TM in Tables I and II), where the third and fourth
methods are CNN-based ones, but the other methods are not
based on machine learning.

B. Results

Tables I and II illustrate experimental results in terms of
HDR-VDP and PU encoding + MS-SSIM, respectively. A
larger value for both metrics means higher similarity between
a predicted HDR image and its original HDR image. As shown
in Tables I and II, the proposed iTM-Net provided the highest
scores for the two metrics in the five methods. Therefore, the
proposed method outperformed the conventional methods in
terms of both HDR-VDP and PU-encoding + MS-SSIM. These
results indicate that HDR images predicted by iTM-Net were
more similar to original HDR images than those predicted by
the other methods. Since all predicted HDR images scaled
to match original HDR images, the results illustrate that the
proposed method can linearize images with high-quality. By
comparing with iTM-Net trained with the standard L1-loss, the
proposed iTM-Net produced higher scores for both metrics.

TABLE I
HDR-VDP-2.2 SCORES. “SD” DENOTES THE STANDARD DEVIATION.

Scene
Direct PMET ExpandNet Proposed

Proposed
ITMO [7] [5] [12] w/o TM

DelicateArch 40.94 43.85 59.67 60.58 71.87
GoldenGate(1) 31.31 31.31 46.95 48.70 49.05
HooverDam 28.50 28.50 46.93 47.94 48.52
JesseBrownsCabin 31.89 31.89 39.44 36.79 39.65
WestBranchAusable(2) 33.18 33.18 52.19 48.30 51.77
Average (20 images) 34.26 34.67 48.47 49.69 52.10
SD (20 images) 5.86 6.83 5.93 8.43 9.94

TABLE II
PU ENCODING + MS-SSIM SCORES. “SD” DENOTES THE STANDARD

DEVIATION

Scene
Direct PMET ExpandNet Proposed

Proposed
ITMO [7] [5] [12] w/o TM

DelicateArch 0.7289 0.7702 0.9896 0.9741 0.9960
GoldenGate(1) 0.6335 0.6335 0.9489 0.9576 0.9759
HooverDam 0.5350 0.5350 0.8910 0.8969 0.9114
JesseBrownsCabin 0.2577 0.2577 0.8851 0.6490 0.8508
WestBranchAusable(2) 0.2264 0.2264 0.8942 0.8908 0.9760
Average (20 images) 0.4215 0.4256 0.9017 0.8964 0.9569
SD (20 images) 0.2127 0.2207 0.0593 0.0843 0.0410

Hence, the proposed loss function is effective to train CNNs
for inverse tone mapping.

Figure 3 shows examples of HDR images generated by
the four methods. Here, these images were tone-mapped
from predicted HDR images because HDR images cannot be
displayed in commonly-used LDR devices. From Fig. 3, it
is confirmed that the proposed method produced a higher-
quality HDR image which similar to an original HDR one Ẽ,
than other methods. These figures also show that methods not
based on machine learning caused images to be significantly
distorted.

For these reasons, it is showed that the proposed method
is effective to generate high-quality HDR images from single
LDR images. Especially, the use of the proposed loss function
enables us to improve the performance of CNNs for inverse
tone mapping.

V. CONCLUSION

In this paper, a novel inverse tone mapping network, called
iTM-Net, was proposed. For training iTM-Net, a novel loss
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(a) Input x (b) Direct ITMO [7] (c) PMET [5] (d) ExpandNet [12] (e) Proposed (f) Ground truth Ẽ
Fig. 3. Experimental Results [WestBranchAusable(2)]. HDR images (b)-(f) were tone-mapped for visualizing.

function considering the non-linear relation between HDR and
LDR images was also proposed. In the proposed loss function,
target HDR images are tone-mapped into LDR images by an
invertible tone mapping operator. The use of the proposed
loss function enables us not only to normalize HDR images,
but also to distribute pixel values of HDR images, like those
of LDR ones. As a result, the performance of CNNs for
inverse tone mapping can be improved. Experimental results
showed that HDR images predicted by iTM-Net trained with
the proposed loss function have higher-quality than HDR ones
predicted by conventional methods including the state-of-the-
arts, in terms of HDR-VDP-2.2 and PU encoding + MS-
SSIM. In addition, it was also confirmed that the proposed
loss function improves the performance of CNNs, compared
with loss functions not considering the non-linear relation.
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