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Abstract—The parameter estimation of sinusoidal signals, es-
pecially the frequency estimation is for decades a very challenging
problem. Among the various frequency estimation methods, this
paper compares and connects the reassigned spectrum and an
iterative, nonlinear Least Squares method referred to as iQHM
(iterative Quasi Harmonic Model). Interestingly, there are subtle
connections between these two –seemingly different– iterative
methods both in frequency as well in time domain. Moreover,
inspired by the optimal performance of reassigned spectrum
for mono-component sinusoidal signals, a variant of iQHM is
proposed. The new method improves the performance of the
original iQHM approach in frequency estimation by increasing
the region of convergence by 40% on average.

Index Terms—Sinusoidal models, Reassigned spectrum, Quasi-
harmonic model, Nonlinear least squares

I. INTRODUCTION

Sinusoidal representation is a powerful tool for analysis,
synthesis, decomposition and transformation of various pe-
riodic signals such as speech, audio, medical signals, ani-
mal sounds, etc. Non-parametric approaches [1]–[4] aim to
estimate the sinusoidal parameters based on various spec-
tral transformations. On the other hand, parametric methods
[5]–[7] have also been proposed for the estimation of the
time-varying amplitudes and frequencies in multi-component
sinusoidal signals. It is well known that the hardest task
in sinusoidal parameter estimation is the inference of the
frequency values due to their nonlinear nature. Additionally,
the attraction region for unbiased frequency estimation is
inversely proportional to the utilized window length which
results in a trade-off between accuracy and convergence.

In [5], [8], authors developed a model, which is referred
to as Quasi-Harmonic Model (QHM), based on Least Squares
(LS) method for the representation of sinusoidal signals which
accurately estimates the frequency parameters. In a correspon-
dence with P. Babu and P. Stoica [9], [10], an iterative version
of QHM (iQHM) was shown to be (almost) equivalent to the
nonlinear Least Squares frequency estimation approach using
Newton-Gauss (NG) method. That correspondence motivated
us to search for connections and relevance between iterative
LS method (either formulated as iQHM or NG method) with
other iterative frequency estimation methods.

Another iterative frequency estimation method is Reas-
signed Spectrum (RS) which is a general post-processing

method applied on time-frequency representations [1], [11].
In RS, time and frequency relocation is performed based on
the center of gravity of the representation. Hence, the overall
resolution of the representation is improved which is crucial
especially for representations such as spectrogram where there
is a trade-off between time resolution and frequency reso-
lution. Restricting the space of all signals to the sinusoidal
subspace, we observe that both time and frequency relocation
of RS have similar structure with iQHM. Qualitatively, in
both iterative methods, frequency estimation is performed
by weighting the sinusoidal signal with an odd function.
While the two methods do not coincide in general for the
frequency re-estimation/relocation procedure, we show here
that when that weighting function is a Gaussian window, then
the two methods provide the same formula for the frequency
re-estimation/relocation procedure. On the other hand, time
relocation restricted to sinusoidal signals has exactly the same
formulation for both methods.

The application of RS to a mono-component sinusoidal
signal reveals that the frequency relocation provides almost
perfect frequency estimation in the noiseless case. Moreover,
since RS is a method based on the center of the gravity of
the time-frequency representation, we expect that for multi-
component sinusoidal signals with different amplitudes, the
frequency estimation to be biased against the weaker sinusoids.
Based on these observations as well on the fact that the
Least Squares method decouples the sinusoids in the multi-
component case when the sample size is sufficiently large,
we developed a variant of iQHM inspired by the frequency
relocation of RS which is named reassigned spectrogram
QHM (rsQHM). To our knowledge, this is the first time that
RS is used for parametric modeling. Simulations on multi-
component sinusoidal signals showed that rsQHM enjoyed on
average 40% larger area of convergence as well it attained the
Cramer-Rao lower bound for both amplitudes and frequencies.

The organization of the paper is as follows. Section II
introduces iQHM and RS methods for frequency and time esti-
mation/relocation and continues by exploring their similarities
and dissimilarities. Then, a variant of iQHM inspired by RS is
introduced in Section III. We then validate the new modelling
approach in a series of experiments. Section IV concludes the
paper.
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II. SINUSOIDAL MODELS, REPRESENTATIONS AND THEIR
CONNECTION

Lets consider a complex-valued discrete-time signal, x(n),
whose short time Fourier transform (STFT) is defined by

X(m,ω) =
N∑

n=−N
w(n)x(n+m)e−jω(n+m) (1)

where w(n)x(n + m) is the windowed frame of the signal
centered at time instant m while w(n) is a real symmetric
window function with support in {−N, . . . , N}.

The common model-basis for comparison between iQHM
and RS is the multi-component sinusoidal signal representa-
tion, however, it is intractable to study them analytically. On
the other hand, for the case of mono-component sinusoidal
signals, the analytic calculations can be performed. Thus, in
the following, we assume that the frame of x(n), centered at
time instant m, is given by

x(n+m) = c1e
jω1(n+m), n = −N, . . . , N (2)

where c1 = c1(m) is the complex amplitude while ω1 =
ω1(m) is the angular frequency.

A. Iterative Least Squares (iQHM)

In iQHM formulation [5], a frame of the signal centered at
time instant m is modeled by

x̃(n+m) = (a1 + nb1)e
jω̃1n, n = −N, . . . , N (3)

where ω̃1 = ω̃1(m) is an initial estimate of the frequency,
a1 = a1(m) is the complex amplitude and b1 = b1(m) is
the complex slope. Assuming ω̃1 is known, a1 and b1 are
computed by minimizing the weighted sum of squared error

ε =
N∑

n=−N
w(n)(x(n+m)− x̃(n+m))2 (4)

Minimization of ε provides the LS estimates

a1 =
1

W0

N∑
n=−N

w(n)x(n+m)e−jω̃1n

b1 =
1

W2

N∑
n=−N

nw(n)x(n+m)e−jω̃1n

(5)

with Wk being the kth moment of the window (i.e., Wk =∑N
n=−N nkw(n), k = 0, 1, . . .).
Assuming that the complex amplitude, a1, is non-zero,

the decomposition (or projection) of the complex slope, b1,
into a parallel and an orthogonal component of the complex
amplitude defined by

b1 = ρ1,1a1 + ρ1,2ja1 (6)

provides a mean to estimate the frequency mismatch error.
Indeed, it has been shown in [8] that frequency mismatch
error defined as the difference between the true frequency and
the initially provided (i.e., ω1 − ω̃1), is estimated from ρ1,2.

Therefore, an updating procedure for the frequency estimation
problem is given by

ω̂1 = ω̃1 + ρ1,2 (7)

This iterative procedure was shown to be equivalent to the
nonlinear LS frequency estimation problem based on NG
method [9], [10].

Coefficient ρ1,1, which in the context of iQHM accounts for
the linear amplitude slope of the signal, is given by [8]

ρ1,1 = R

{
b1
a1

}
=
W0

W2
R

{∑N
n=−N nw(n)x(n+m)e−jω̃1n∑N
n=−N w(n)x(n+m)e−jω̃1n

}
(8)

where R{·} and I{·} denote the real and imaginary parts
of a complex number, respectively. Coefficient ρ1,2, which,
as already mentioned above, provides an estimate of the
frequency mismatch, is given by

ρ1,2 = I

{
b1
a1

}
=
W0

W2
I

{∑N
n=−N nw(n)x(n+m)e−jω̃1n∑N
n=−N w(n)x(n+ n)e−jω̃1n

}
(9)

B. Reassigned Spectrum

In the reassignment method, a time-frequency representation
of the signal is sharpened by appropriately post-processing the
time-frequency representation. Two central operations, namely,
time relocation and frequency relocation are performed. Time
relocation is a displacement of the energy in time which
depends on the center of gravity of the windowed signal
in time-domain. When the time-frequency representation is
the spectrogram, time relocation at coordinates (m,ω) cor-
responds to the estimate of the local group delay and it is
given by [1]

m̂ = m−R

(
XT w(m,ω)

X(m,ω)

)
(10)

where XT w(n, ω) = −
∑N

n=−N nw(n)x(n + m)e−jω(n+m)

is the STFT of x(n) with tilted ”window” function nw(n).
Thus,

m̂ = m+R

(∑N
n=−N nw(n)x(n+m)e−jωn∑N
n=−N w(n)x(n+m)e−jωn

)
. (11)

Frequency relocation is a displacement of the energy in
frequency which again depends on the center of gravity of
the windowed signal but now the operation is performed in
frequency-domain. When the time-frequency representation is
the spectrogram, frequency relocation at coordinates (m,ω)
corresponds to local estimate of instantaneous frequency and
it is given by [1]

ω̂ = ω + I

(
XDw(m,ω)

X(m,ω)

)
(12)

where XDw(m,ω) = −
∑N

n=−N w′(n)x(n + m)e−jω(n+m)

is the STFT of x(n) with ”window” function the discretized
version of the derivative of the respective continuous-time
window, w(t). Therefore,

ω̂ = ω − I

(∑N
n=−N w′(n)x(n+m)e−jωn∑N
n=−N w(n)x(n+m)e−jωn

)
. (13)
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Fig. 1. Frequency estimation error for iQHM (upper panel) and rsQHM
(lower panel) with η1 := ω1 − ω̃1 being the initial frequency mismatch.
Hann window was used and two iterations were performed.

Remark: In equations (8), (9), (11) and (13), the denom-
inator of the fraction, which equals to X(m,ω), may take
the value 0 resulting in ill-posed formulation. This erroneous
behavior is evident at Fig. 1 where the frequency estimation
diverges at these particular points. However, this issue has been
tackled in RS by not performing relocation when |X(m,ω)| is
below a small threshold value while in iQHM it was tackled
by considering only a region (of attraction) where no zeros of
X(m,ω) are present.

C. Connection between iQHM and RS

Comparing (8) and (11), we observe that the time relocation
of the reassignment method can be written as

m̂ = m+
W2

W0
ρ1,1 (14)

Notice that this result is independent of the underlying signal,
x(n). Thus, the term W2

W0
ρ1,1 is equal to the local group delay.

The group delay has been used, among others, for spectrum
estimation [12] and for determining the instants of significant
excitation in speech signals [13].

The comparison between (7), (9) and (13) is more involved.
Equations (7) and (13) are identical only when

w′(n) = −κnw(n)⇒ w(n) = e−
κ
2 n

2

(15)

where κ = W0

W2
. Hence, for Gaussian windows iQHM and

RS have similar frequency update rules and the frequency
relocation of the reassignment method can be written as

ω̂ = ω +
W2

W0
ρ1,2 (16)

Therefore, for Gaussian windows one iteration is enough for
the iQHM method in order to converge. However, for any
other window type the frequency update of iQHM and RS are
different.
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Fig. 2. Maximum allowed frequency mismatch in multi-component signals
for iQHM (solid line) and rsQHM (dashed line) utilizing Hann window.

III. RSQHM

A. Motivation

RS is a general nonparametric method for improving the
localization of the spectrogram. If we restrict RS to the case
of (mono-component) noise-free, sinusoidal model, frequency
relocation is perfect. Indeed, the spectrogram for the sinusoidal
signal is given by

X(m,ω) = c1e
j(ω1−ω)m

N∑
n=−N

w(n)ej(ω1−ω)n (17)

while the spectrogram of the signal with window function the
discretized derivative of the window is given by

XDw(m,ω) =

N∑
n=−N

w′(n)ej(ω1−ω)(n+m)

≈ j(ω − ω1)c1e
j(ω1−ω)m

N∑
n=−N

w(n)ej(ω1−ω)n

(18)

Substituting (17) and (18) into (13), we obtain that

ω̂ ≈ ω − I(j(ω − ω1)) = ω + ω1 − ω = ω1

Therefore the reassignment method achieves almost perfect
relocation of the frequency in one step. The induced numerical
error is inverse proportional to the sampling frequency while
it is noteworthy that the frequency relocation is perfect when
the analysis is performed in continuous time.

B. Formulation of rsQHM

Motivated by the fact that RS for sinusoidal signals provides
perfect frequency relocation, we suggest varying QHM so as to
approach closer to the reassignment method. Thus, the variant
of QHM is defined by

x̃(n) =
(
a1w(n)− b1κ̃w

′(n)
)
ejω̃1n, n = −N, . . . , N (19)

where κ̃ =
∑
n |n
√

w(n)|∑
n

∣∣∣w′(n)/
(
2
√

w(n)
)∣∣∣ is the appropriate normaliza-

tion constant. Similar to iQHM, the LS method is used for
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Fig. 3. Mean squared error (MSE) of the amplitudes for iQHM and rsQHM
after two iterations utilizing Hann window.
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Fig. 4. Mean squared error (MSE) of the frequencies for iQHM and rsQHM
after two iterations utilizing Hann window.

the estimation of the parameters and the same decomposi-
tion/projection is performed for rsQHM.

C. Numerical Validation

The comparison between iQHM (i.e. Newton-Gauss si-
nusoidal parameter estimation) and its variant (rsQHM) is
threefold. All the presented figures are obtained utilizing a
squared Hann window. The reason of using the square of the
window is that the normalization constant is now given by
κ̃ =

∑
n |nw(n)|∑
n |w′(n)| which is well-posed even when the window

function takes zero values. Fig. 1 show the error between the
true frequency mismatch and the estimated one as it is given
by ρ1,2 after two iterations. Upper panels shows the frequency
mismatch error for the iQHM while the lower panels for the
rsQHM. Note also that the analyzed signal is monocomponent
and the window length was 16ms.

It is evident that rsQHM estimates correctly the frequency
of the sinusoid for a wider range of values as it is expected
from Section III-A. However, as we mentioned in the previous
Section, there are frequency mismatch values which cannot
be correctly estimated because the amplitude becomes zero at
these frequencies. Yet, rsQHM seems to have a larger region
of convergence compared to iQHM. Indeed, Fig. 2 depicts
the maximum allowed frequency mismatch (i.e., the region
of convergence) for iQHM and rsQHM as a function of the
window length. In this example, a three-component sinusoidal
signal was considered and the figure shows the maximum
allowed frequency mismatch (MAFM) for the middle sinusoid.
Thus, the expected behavior of MAFM is initially increasing
as the window length is increased because the frequency
resolution is increased, but after a point MAFM starts to
decrease due to the larger window length that reduces the
area of guaranteed convergence. The dark dashed-line shows
the lower bound of MAFM for rsQHM. On average, MAFM
for the lower bound of rsQHM is 40% larger providing an
advantage over iQHM. The oscillatory behavior of rsQHM for

window length larger than 40ms is explained by the following
fact. When the frequency mismatch falls between the diverging
points (see lower panel of Fig. 1) then rsQHM correctly
estimates the frequency error thus the MAFM is computed to
be larger. Nevertheless, this is not always the case therefore
we observe oscillations in MAFM.

The final comparison is the sensitivity of the models under
noisy conditions. It is well known that Newton-Gauss method
(as well as iQHM) is robust under mild noise conditions (see
[10]) and we test if the same holds for rsQHM. Figs. 3 and
4 show the mean squared error (MSE) for the amplitudes
and the frequencies of a multi-component sinusoidal signal
after two iterations. The signal is exactly the same as those
used in [10]. For comparison purposes, the Cramer-Rao lower
bound (CRLB) is also provided. Presumably, rsQHM is robust
under a wide range of noise conditions as it is measured by the
signal-to-noise ratio (SNR) and two iterations are more than
adequate for converging to the optimal value. We observe that
rsQHM performs as good as iQHM in terms of MSE. Finally,
we remark that similar results are obtained when other window
types such as Gaussian, Hamming or Blackman are utilized.

IV. CONCLUSION

This paper highlights the connections between iterative LS
estimation (Newton-Gauss method) and RS for sinusoidal
models. Moreover, a variant of iQHM based on RS (rsQHM)
was shown to perform better in terms of increasing the
region of convergence of iQHM. We presented results for
mono-component as well multi-component signals. Numerical
evaluations on multi-component signals showed that rsQHM
achieved the CRLB.
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