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Abstract—Studies on identification of species-specific protein
regions, i.e., unique or highly dissimilar regions with respect
to close species, will lead us to understanding of evolutionary
traits, which can be related to novel functionalities or diseases.
In this paper, we propose an alignment-free method to find and
visualize distinct regions between two collections of proteins.
We applied the proposed method, FRUIT, on multiple synthetic
and real datasets to analyze its behavior when different rates of
substitutional mutation occur. Testing with different k-mer sizes
showed that the higher the mutation rate, the higher the relative
uniqueness. We also employed FRUIT to find and visualize dis-
tinct regions in modern human proteins relatively to the proteins
of Altai, Sidron and Vindija Neanderthals. The results show that
four of the most distinct proteins, named ataxin-8, 60S ribosomal
protein L26, NADH-ubiquinone oxidoreductase chain 3 and
cytochrome c oxidase subunit 2 are involved in SCA8, DBA11,
LS and MT-C1D, and MT-C4D diseases, respectively. There is
also Interferon-induced transmembrane protein 3, among others,
which is part of the immune system. Besides, we report the most
similar primate exomes to the found modern human one, in terms
of identity, query cover and length of sequences. The reported
results can give us insight to the evolution of proteomes.

Index Terms—palaeoproteomics, Neanderthals, alignment-free
method, relative uniqueness, Bloom filter

I. INTRODUCTION

Palaeoproteomics is an emerging field that focuses on the

study of ancient proteomes and intersects evolutionary biology,

archaeology and anthropology. It has the potential to provide

researchers with the information about new or existing phylo-

genetic trees, species identification and past migrations [1]–[5].

Proteins can last longer than DNA, since they have more

stable bonds for connecting them, are deposited in greater vol-

umes and have more degradation-proof molecular structures.

This makes them appropriate for recovering information from

much longer periods back in time [6]. Even with the best

preservation conditions, the oldest DNA samples date back

to 0.4–1.5 million years ago, while the oldest proteins are

hundreds of millions years old [7], [8].

One of the closest hominins to modern humans are Ne-

anderthals, who lived within Eurasia from 400,000 until

40,000 years ago [9], [10]. Their sequences has been provided

in the literature, as pieces [11]–[13], complete mitochon-

drial [14], genome draft [15], complete genome [16], [17]

and complete exome [18]. In this paper, we use the complete

exomes of a ∼50,000 year old Neanderthal from Denisova

Cave in the Altai Mountains in Siberia, a ∼49,000 year old

one from El Sidron Cave in Spain and a ∼44,000 year old

one from Vindija Cave in Croatia [18].

In [19], it has been suggested that modern human inter-

bred with Neanderthals when they arrived to Europe. Con-

sidering this plus the similarity reported between these two

hominins [20], [21] would mean that unique regions in the

proteome of modern humans may be of limited extent. In this

paper, we use Altai, Sidron and Vindija Neanderthals proteins

to find and visualize distinct regions of the reference proteome

of modern human. This has been studied at the genomic

level [22]; here, we study it at the proteomic level.

In the following section, we propose an alignment-free

probabilistic method to find unique regions in collections of

proteins and describe it in detail. Then, we present the results

of running the implemented tool, FRUIT, on a collection of

Neanderthal and modern human proteins as well as synthetic

sequences. We also analyze the effect of mutations in the

mentioned datasets. Finally, we draw some conclusions.

II. METHOD

We tackle the problem of finding the regions in target

sequences which do not exist in reference sequences. For this

purpose, a model is required that can search the references for

the existence of all words of a certain size, k, in the targets.

It should also be able to report the positions of unique words.

The model that we use is described next.

A. Model

For the purpose of checking the existence of all k-mers

of a target in a reference sequence, it is impractical to use

a binary vector which considers all the possible situations.

We give an example; assume the cardinality of the alphabet

representing a protein sequence is 20, and the k-mer size is 14.

This needs a gigantic amount of 2014 � 1.5 million terabytes

of memory. To tackle this problem, we use a space-efficient

probabilistic data structure, named Bloom filter [23], [24]. In

this data structure, false negative matches are impossible but

false positives are not, i.e., it enables to test whether the k-mers

of a target sequence are definitely not members of a reference,

or they possibly are. A Bloom filter, with optimal number of
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hash functions and an appropriate size, can provide the results

only slightly different than the deterministic approach.

An empty Bloom filter is a bit vector of size m. This model

requires h different hash functions which map, separately,

each k-mer to one of the bit vector positions; this will

generate a uniform random distribution. The number of hash

functions, h, which minimizes the false positive probability,

p, is proportional to the number of amino acids in a reference

sequence, n, and is obtained by

h =
m

n
ln 2. (1)

It has been proven, in [25], that considering the optimal value

of h, the false positive probability is at most
(
1− e−

h(n+0.5)
m−1

)h

. (2)

To hash k-mers, we use universal hashing. Assume our

intention is to map k-mers from some universe U to m bins,

labeled as [m] = {0, 1, . . . ,m − 1}. We need to randomly

select a function from a family of hash functions. A family of

functions F = {f : U → [m]} is called a universal family if,

∀x, y ∈ U, x �= y : Pr
f∈F

[f(x) = f(y)] ≤ 1

m
. (3)

1/m is the probability of collision when a hash function

maps a key to a truly random element. To obtain a universal

hash function, we use the state-of-the-art multiply-add-shift

scheme [26]:

fa,b(x) = ((ax+ b) mod 2w) div 2w−M , (4)

in which, w is the number of bits in a machine word, e.g., 64,

M is log2 m, assuming the number of bins, m, is a power of

two, a is a random positive integer less than 2w and b is a

random non-negative integer less than 2w−M .

The algorithm of the proposed method is shown in Fig. 1.

B. Implementation

The proposed method has been implemented in C++ lan-

guage, under the name of FRUIT, and the executables are

publicly available at [27], under GPLv3. The implemented tool

contains three programs: fruit-map (to map the relatively

unique regions), fruit-filter (to filter the regions and

save the positions) and fuit-visual (to visualize positions

of the relatively unique regions). The three file formats of

FASTA, FASTQ and SEQ (including solely amino acid letter

codes, e.g., M, A, R, D, etc.) can be fed to this tool.

III. RESULTS

We tested the proposed tool on a machine which had an

4-core 3.40 GHz Intel® Core™ i7-6700 CPU with 32 GB

RAM. The results presented in this paper can be replicated

by the script run.sh, available at [27].

To analyze the behavior of FRUIT for different rates of

substitutional mutations, we applied it to real and synthetic

datasets, shown in Table I, and measured uniqueness ratios.

These datasets are available at [27], however, they can be

downloaded from [28] and [29], too.

1: Initialize the size of Bloom filter, m, and the k-mer size, k
2: for each r in reference proteins do
3: Calculate the optimal no. of hash functions, h, using (1)

4: Calculate the false positive probability, p, using (2)

5: for each k-mer string, s, in r do
6: for each hi in hash function family do
7: Hash s to position os,i in the Bloom filter, using (4)

8: Update the Bloom filter on the position os,i
9: end for

10: end for
11: for each t in target proteins do
12: for each k-mer string, s, in t do
13: for each hi in hash function family do
14: Hash s to position os,i in the Bloom filter

15: Query the Bloom filter for the position os,i and

save the Boolean result to the unique file uri,tj

16: end for
17: end for
18: end for
19: end for
20: for each t in target proteins do
21: Perform bit-wise or on all Boolean elements of unique

files uri,t and save the result to the unique file ut

22: Filter ut by a window of size w and save the relatively

unique positions in the file ot
23: end for
24: Illustrate the positions, saved in ot files, in an SVG image

Fig. 1. The algorithm of the proposed method.

The uniqueness ratio falls within the range [0.0, 1.0], and

is obtained by size of the relatively unique region divided by

size of the sequence. It shows the portion of a target file which

does not exist in the reference, with respect to the k-mer size.

Fig. 2 demonstrates uniqueness ratios versus mutation rates,

for k-mer sizes of 5 to 10, for a synthetic dataset plus three

samples of Altai, Sidron and Vindija Neanderthals. To mutate

the datasets, we use the mutate tool [27]. Note that when

k = 1, 2, 3, 4, the uniqueness ratio is 0 for all mutation rates,

i.e., all words of size up to 4 in the targets are found in the

references. Fig. 2 shows that the higher the mutation rate,

the higher the uniqueness ratio, and also, the greater the k,

the greater is the uniqueness ratio. As an example, with 50%

mutation, given a uniform distribution, we expect a target to

be highly dissimilar to the reference. This can be seen in all

of the datasets, for k ≥ 7.

For the next experiment, we picked as targets all the 20,412

proteins of modern human [29], and found their unique regions

relatively to the Altai, Sidron and Vindija Neanderthals [28],

as references. For this purpose, we first used fruit-map
to map amino acids of the targets to the files showing their

existence in the references. In this phase, we considered as data

structure a highly accurate Bloom filter with the false positive

probability of 0.00001. Then, we used fruit-filter to

filter the results of fruit-map and find the positions of
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TABLE I
DATASETS USED IN THIS PAPER, INCLUDING SYNTHETIC AND REAL DATA FROM NEANDERTHALS AND MODERN HUMAN.

Reference sequences Target sequences
Dataset Species # amino acids # reads Cardin.a Dataset Species # amino acids # reads Cardin.a

Synthetic – 5,000,000 - 20 Syn. mutatedb – 5,000,000 – 20

Altai 22,829,171 42,394 A. mutatedb 22,829,171 42,394

Sidron H. neanderthalensis 22,829,205 42,394 21 S. mutatedb – 22,829,205 42,394 21

Vindija 22,829,173 42,394 V. mutatedb 22,829,173 42,394
Altai 22,829,171 42,394

Sidron H. neanderthalensis 22,829,205 42,394 21 Modern H. sapiens 11,374,527 20,412 21

Vindija 22,829,173 42,394 humanc,d
aCardinality: number of different amino acids in a protein sequence.
bThis dataset is a copy of the reference file which is mutated from 1% to 50%, using mutate tool [27]. It contains 50 different files with the same
number of amino acids and number of reads.
cReviewed reference proteome–manually annotated.
dThe modern human multi-FASTA file is divided into 20,412 FASTA files. Each one of them is considered as a target, and the three samples of Altai,
Sidron and Vindija Neanderthals are considered as references altogether.

Fig. 2. Uniqueness ratios for different rates of mutation and different k-mer
sizes applied on synthetic and real (Neanderthals) datasets.

relatively unique regions. Finally, we used fruit-visual
to visualize the relative positions found in the previous step.

Fig. 3a shows distributions of uniqueness ratios for modern

human sequences relatively to Neanderthals sequences, for dif-

ferent k-mer sizes. As can be seen, the shapes of distributions

changes for k = 5, 6, 7, but thereafter, it changes only slightly

with k. Fig. 3b demonstrates the total uniqueness ratios for

different k values. For k = 7, the sign of the second derivative

changes from positive to negative, meaning that it is the lowest

upper-bound that can be chosen for our purpose. Fig. 3c shows

the probability of a target word being seen in the reference,

considering different k-mer sizes. As shown, its value is ∼0

for k ≥ 4. The probabilities of the k-mers are considered to

be 1/21k, in which 21 is the maximum cardinality of alphabet

representing the target and references.

The top ten unique modern human proteins relatively to the

Neanderthals proteins are described in Table II, in detail, and

illustrated in Fig. 4, using fruit-visual. Each color in the

figure represents a continuous relatively unique region. As an

example, 2 out of 145 amino acids in 60S ribosomal protein

● ● ● ●

●

●

●
●
●

●

●
● ● ● ● ● ● ●

Fig. 3. a) Distribution of uniqueness ratios, b) total uniqueness ratios and
c) probability of a target word being seen in the reference, for different k-mers.

L26 are not relatively unique, leading to the separation of the

protein into two regions, each one represented by a distinct

color. For a more complete list of detected proteins, see [27].

Table III describes the most similar exomes of non-human

primates to the ones listed in Table II. This table shows that

the found modern human exomes exist, fully or partially, in

the listed primates, but not in the Neanderthals. This can have

multiple reasons, such as ambiguity of computational models

in prediction of proteins, inclusion of contaminant exogenous

sources [30] and ancient DNA damage [31].

IV. CONCLUSIONS

We proposed a probabilistic method, FRUIT, to find dissimi-

larity between two collections of proteins. Testing on synthetic

and real (Neanderthals) datasets, the impact of different rates

of substitutional mutation on uniqueness ratios were analyzed.

The FRUIT tool was also employed to map, filter and visualize

unique proteins in modern humans relatively to Altai, Sidron

and Vindija Neanderthals. The top ten distinct proteins are re-

ported in this paper. Some of the found proteins are associated
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TABLE II
THE MOST UNIQUE PROTEINS OF MODERN HUMAN ABSENT IN THE NEANDERTHALS.

Accession Modern human protein Gene Len.b Unique. Note
numbera ratio
Q3SY05 putative uncharacterized protein

encoded by LINC00303
LINC00303 128 0.9922 product of a dubious CDS predictionc

Q5QFB9 protein PAPPAS PAPPA-AS1 102 0.9902 product of a dubious CDS predictionc

Q156A1 ataxin-8 ATXN8 80 0.9875 involved in spinocerebellar ataxia 8 (SCA8) diseased. It is
unknown whether this protein exists in non-SCA8 individuals

Q5VT33 putative uncharacterized protein
encoded by LINC01545

LINC01545 79 0.9873 protein predicted

P61254 60S ribosomal protein L26 RPL26 145 0.9862 component of the large ribosomal subunit. It is involved in
Diamond-Blackfan anemia 11 (DBA11) diseased

A8MTZ7 uncharacterized protein C12orf71 C12orf71 265 0.9851 protein predicted
Q01628 interferon-induced transmem-

brane protein 3
IFITM3 133 0.9850 IFN-induced antiviral protein which disrupts intracellular choles-

terol homeostasis
H3BRN8 uncharacterized protein C15orf65 C15orf65 121 0.9835 experimental evidence at transcript level
P03897 NADH-ubiquinone oxidoreduc-

tase chain 3
MT-ND3 115 0.9826 core subunit of the mitochondrial membrane respiratory chain

NADH dehydrogenase (Complex I) that is believed to belong
to the minimal assembly required for catalysis. It is involved in
Leigh syndrome (LS) and mitochondrial complex I deficiency
(MT-C1D) diseasesd

P00403 cytochrome c oxidase subunit 2 MT-CO2 227 0.9824 cytochrome c oxidase is the component of the respiratory chain
that catalyzes the reduction of oxygen to water. Subunits 1-3 form
the functional core of the enzyme complex. Subunit 2 transfers
the electrons from cytochrome c via its binuclear copper A center
to the bimetallic center of the catalytic subunit 1. It is involved
in mitochondrial complex IV deficiency (MT-C4D) diseased

aA unique identifier of an entry in the UniProtKB database [29].
bNumber of amino acids in the sequences.
cLevel of evidence is “uncertain”; therefore, it is either a) derived from the erroneous translation of a pseudogene or non-coding RNA, that should be
removed from protein database, in case the evidence of pseudogenization is overwhelming for instance, or b) it should be upgraded to the certain level,
which has happened to e.g., E.coli pseudogene ymiA that has now been found to produce a protein product.
dThis disease is caused by mutations affecting the gene represented in this entry.

Unique.
ratio

127 / 128

101 / 102

79 / 80

78 / 79

143 / 145

265 / 269

131 / 133

119 / 121

113 / 115

223 / 227

Pos 20 40 60 80 100 120 140 160 180 200 220 240 260

Pos 20 40 60 80 100 120 140 160 180 200 220 240 260

Putative uncharacterized protein encoded by LINC00303

Protein PAPPAS

Ataxin-8

Putative uncharacterized protein encoded by LINC01545

60S ribosomal protein L26

Uncharacterized protein C12orf71

Interferon-induced transmembrane protein 3

Uncharacterized protein C15orf65

NADH-ubiquinone oxidoreductase chain 3

Cytochrome c oxidase subunit 2

Fig. 4. Modern human proteins with the most distinct regions against Altai, Sidron and Vindija Neanderthals. The format m /n shows that considering k-mer
size of 7, m out of n amino acids are relatively unique.

with diseases, including SCA8, DBA11, LS, MT-C1D and MT-

C4D, and some others are putative uncharacterized proteins,

which are products of dubious CDS prediction. Several other

proteins are detected and sorted based on their uniqueness

ratios and are available at [27]. Furthermore, we have listed

and described the most similar primate exomes to the found

modern human ones. Future studies can be done based on the

reported proteins to find their expression and meaning in the

evolution path. They might reveal unique functionalities in the

Neanderthals or modern humans.
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TABLE III
THE MOST SIMILAR NON-HUMAN PRIMATE EXOMES TO THE MODERN HUMAN, THAT ARE LISTED IN TABLE II.

Modern human protein Similar primate protein Accession Species Len. Identityb Query
numbera coverc

Putative uncharacterized protein
encoded by LINC00303

predicted putative uncharacterized protein en-
coded by LINC00303

XP 004088138.1 N. leucogenys 128 92.19% 100%

Protein PAPPAS predicted protein PAPPAS XP 015292165.1 M. fascicularis 105 94.06% 99%

Ataxin-8 —d

Putative uncharacterized protein
encoded by LINC01545

putative uncharacterized protein encoded by
LINC01545

XP 008960198.1 P. paniscus 79 100.00% 100%

60S ribosomal protein L26 60S ribosomal protein L26 isoform X1 XP 008059327.2 C. syrichta 149 100.00% 100%
Uncharacterized protein C12orf71 uncharacterized protein C12orf71 homolog XP 520810.1 P. troglodytes 269 99.26% 100%
Interferon-induced transmem-
brane protein 3

predicted interferon-induced transmembrane
protein 3 isoform X2

XP 004050385.1 G. gorilla gorilla 133 100.00% 100%

Uncharacterized protein C15orf65 uncharacterized protein C15orf65 homolog iso-
form X2

XP 003314728.1 P. troglodytes 121 99.17% 100%

NADH-ubiquinone oxidoreduc-
tase chain 3

NADH dehydrogenase subunit 3 ABU47841.1 P. troglodytes 115 95.65% 100%

Cytochrome c oxidase subunit 2 cytochrome oxidase subunit II (mitochondrion) ACJ63818.1 G. gorilla gorilla 227 99.56% 100%
aA unique identifier of an entry in the NCBI database [32].
bDescribes the percentage of identical characters in proteins.
cDescribes how much of the primate protein is covered by the modern human protein.
dUsing QuickBLASTP [33], no similar protein was found. Using DELTA-BLAST [34], which yields better homology detection, we found ataxin-8,
partial protein from Varroa destructor species with the length of 89, 100.00% identity and 98% query cover, but it does not belong to a primate.
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