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Abstract—Image-to-image translation is a new field in com-
puter vision with multiple potential applications in the medical
domain. However, for supervised image translation frameworks,
co-registered datasets, paired in a pixel-wise sense, are required.
This is often difficult to acquire in realistic medical scenarios.
On the other hand, unsupervised translation frameworks often
result in blurred translated images with unrealistic details. In
this work, we propose a new unsupervised translation framework
which is titled Cycle-MedGAN. The proposed framework utilizes
new non-adversarial cycle losses which direct the framework to
minimize the textural and perceptual discrepancies in the trans-
lated images. Qualitative and quantitative comparisons against
other unsupervised translation approaches demonstrate the per-
formance of the proposed framework for PET-CT translation
and MR motion correction.

Index Terms—Medical image translation, Unsupervised Learn-
ing, PET-CT, GANs, Motion Correction

I. INTRODUCTION

In recent years, the machine learning community has
achieved tremendous leaps in performance. This owes to in-
creasingly available computational resources and open-source
access to large datasets. From another perspective, radiological
scans are vital tools in modern medicine. They enable diagnos-
tics, disease tracking and patient treatment monitoring. This
has led to the utilization of recent advances in computer vision,
especially Deep Convolutional Neural Networks (DCNNs), in
the field of medical image analysis. For example, DCNNs have
been adapted for lesion classification in Magnetic Resonance
Images (MRI) [1], 3D image segmentation [2] and anomaly
detection [3] among other applications [4], [5].

A branch of deep learning is generative models which are
utilized for dataset generation and augmentation. Amongst
them, Generative Adversarial Networks (GANs) [6] are the
prominent choice, with a large body of research focusing
on theoretical and architectural analysis [7], [8]. In 2016,
the pix2pix framework, a supervised GAN-based framework,
has introduced the task of image-to-image translation from a
source domain image, e.g. a day-time image, to a correspond-
ing target domain image, e.g. a night-time image, provided
that both domains have the same underlying structure [9]. This
task has been adapted to the field of medical image analysis
by using pix2pix for applications such as low-dose Computed
Tomograph (CT) denoising [10], Positron Emission-computed
Tomography (PET) to MR translation [11], splenomegaly
segmentation [12] and MR to CT translation [13]. Other
specialized architectures have been introduced for tasks such
as compressed sensing MR reconstruction [14] and retinal
image super-resolution [15]. Recently, we proposed MedGAN

as a new framework for image translation [16]. It extends
pix2pix with a cascaded U-net generator architecture [17] and
additional non-adversarial losses, such as perceptual [18] and
style transfer loss functions [19]. Since then it has been applied
to tasks such as PET denoising [16], MR motion artifacts
correction [20] and medical image in-painting [21].

However, these methods are supervised. In other words,
training such models requires paired datasets where the images
from the source domain are paired in a pixel-wise sense with
the corresponding images in the target domain. Nevertheless,
the acquisition of such paired datasets in real-life situations
is often challenging. This is due to difficulties in obtaining
co-registered cross-modality data from different scanners and
acquisition sequences or multi-modal data for some organs
such as the heart due to technical challenges or the required
extensive planning and acquisition. Consequently, unsuper-
vised image translation techniques, which are trainable with no
paired examples but with image samples from both domains,
are especially important for medical image translation.

Several methods for unsupervised image-to-image transla-
tion have been developed. UNIT is an unsupervised translation
framework which maps the input-target images into a common
latent space using a pair Variational Auto Encoder-GANs
(VAE-GANs) before reconstruction in the desired image do-
main [22]. It has been utilized in the medical domain for
the translation of T1-weighted and T2-weighted MR scans
[23]. Cycle-GAN is another unsupervised translation approach
which is based on the combination of adversarial losses and
the pixel-wise cycle-consistency loss [24]. It has been adapted
for medical translation tasks such as CT to MR bidirectional-
translation [25] and CT denoising [26]. Other unsupervised
frameworks exist with an overview available in [27].

In this work, we introduce a new framework for unsuper-
vised medical image translation titled Cycle-MedGAN. This
work expands the Cycle-GAN framework by introducing two
new non-adversarial loss functions analogous to the perceptual
and style transfer losses utilized in MedGAN. However, unlike
MedGAN, the calculation of such losses does not require
any explicit pairing of the input datasets during training.
The training procedure is unsupervised using unpaired data,
while validation is conducted on paired datasets.To validate the
performance of the proposed framework, qualitative and quan-
titative comparisons against unsupervised frameworks, such
as Cycle-GAN and UNIT, are conducted. The comparisons
are carried out on the two medical tasks, MR motion artifact
correction and PET to CT translation.
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Fig. 1: An overview of the Cycle-GAN framework for unpaired image translation. x and y are unpaired images randomly
sampled from their respective domains.

II. METHOD

The proposed Cycle-MedGAN framework is based on the
traditional Cycle-GAN framework with the inclusion of new
non-adversarial losses. The baseline Cycle-GAN model is
illustrated in Fig. 1.

A. The Cycle-GAN Framework
Cycle-GAN is an unsupervised framework which allows

bidirectional translation between the source domain X , e.g.
PET images, and the target domain Y , e.g. CT images. It
consists of two mapping functions G1 : X → Y and
G2 : Y → X , where G1 and G2 are two generator networks
parametrized using DCNNs. Each of the generator networks
is trained adversarially using a corresponding discriminator
network, D1 and D2. For illustration, the first generator
network G1 receives as input a source domain image, x ∈ X ,
and outputs a synthetic translation, ŷ = G1(x). D1 receives
as input both the synthetic output ŷ and an unpaired image
randomly sampled from the desired target domain, y ∈ Y .
The two networks, G1 and D1, are pitted against each other
in competition, where D1 acts as a binary classifier attempt-
ing to distinguish between the translated samples and the
target domain samples. On the other hand, G1 attempts to
improve the quality of the translated output, thus deceiving
the discriminator. This training procedure is formulated as a
min-max optimization task over the adversarial loss function
Ladv(G1, D1):

min
G1

max
D1

Ladv(G1, D1) = Ey [logD1(y)] +

Ex [log (1−D1 (G1(x)))]
(1)

and Ladv(G2, D2) is the analogous loss function for the second
pair of networks, G2 and D2, formed by replacing the input
images as y and the translated outputs as x̂.

Training the framework merely with the adversarial losses
is not sufficient since it may lead to mode collapse, where
a set of different input images are mapped into a single
image in the target domain [24]. Therefore, an additional
constraint regularizing the mapping functions is essential. This
is achieved by Cycle-GAN which enforces the two mapping
functions, G1 and G2, to be cycle-consistent with each other.
In other words the two generator networks should invert each

other such that ˆ̂x = G2(G1(x)) ≈ x and ˆ̂y = G1(G2(y)) ≈ y.
This behaviour can be incentivized by using the pixel-wise
cycle-consistency loss for both generators:

Lcyc(G1, G2) = Ex [‖x−G2 (G1(x))‖1]
Ey [‖y −G1 (G2(y))‖1]

(2)

B. Non-Adversarial Cycle Losses

Cycle-GAN relies on the cycle-consistency loss to avoid
mismatches which could occur due to unsupervised training
using unpaired images. However, it has been discussed in the
literature that pixel-wise losses fail to capture the perceptual
aspect of human judgement on image quality [28]. Thus,
when used in translation tasks, they often lead to results
which lack sharpness and fine-detailed structures [18], [19].
To circumvent this issue, feature-based loss functions were
introduced as additional constraints to enhance the quality of
translated output quality. For instance, the MedGAN frame-
work utilized a combination of perceptual and style transfer
losses [16]. However, for unsupervised image translation, the
utilization of such loss functions is not viable. An unpaired
translation model cannot be trained by penalizing the feature-
based deviation of the translated image from the unknown
ground truth image.

In this work, we propose an adaptation of the above feature-
based loss functions for the task of unsupervised image
translation. The penalized deviation is instead between the
input images, x or y, and the cycle-reconstructed images, ˆ̂x
or ˆ̂y. This process is illustrated in Fig. 2. The first proposed
loss function is the cycle-perceptual loss, LcPercep. Analogous
to the perceptual loss introduced in [16], [18], this loss aims
at minimizing the perceptual discrepancies and enhancing the
global consistency of the output images. This is achieved
by extracting intermediate feature maps, using a pre-trained
feature extractor network, for both the input and the cycle-
reconstructed images. The cycle-perceptual loss then calcu-
lated as the mean absolute error (MAE) between the extracted
feature maps for both generators:

LcPercep =
L∑

i=0

λcp,i (‖Fi (x)− Fi (ˆ̂x)‖1 + ‖Fi (y)− Fi (ˆ̂y)‖1)

(3)
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Fig. 2: An illustration of the proposed cycle non-adversarial loss functions calculated using a pre-trained feature extractor.

where Fi and Fj indicate the extracted feature maps from
the ith layer of the feature extractor network. L is the total
number of layers, λcp,i is the weight given to each layer.

The second proposed loss function is the cycle-style loss,
which is typically utilized for style transfer applications [19].
This loss aims at matching the texture, style and fine details of
the input images onto the cycle-reconstructed images. As a re-
sult, this motivates the generator architectures to produce more
detailed translated outputs. The cycle-style loss is computed
by first calculating the feature map correlations over the depth
dimension. For G1, this is represented by the Gram matrices,
Gri(x) and Gri(ˆ̂x), whose elements are defined as:

Gri(x)m,n =
1

hiwidi

hi∑
h=1

wi∑
w=1

Fi(x)h,w,mFi(x)h,w,n (4)

where hi, wi and di are the spatial height, width and depth
of the extracted feature map of the ith layer of the feature
extractor network.

The style loss is then calculated as the weighted average of
the squared Frobenius norm of the Gram matrices:

LcStyle =

L∑
i=1

λcs,i
1

4d2i

(
‖Gri (x)−Gri (ˆ̂x)‖2F

+ ‖Gri (y)−Gri (ˆ̂y)‖2F
) (5)

with λcs,i is the weight given to the Gram matrices of the ith
layer.

For the Cycle-MedGAN framework, a combination of the
adversarial, cycle-consistency, perceptual consistency and style
consistency losses is utilized. The final min-max optimization
task is given by:

min
G1,G2

max
D1,D2

L =Ladv(G1, D1) + Ladv(G2, D2) + λcPLcPercep

+ λcycLcyc(G1, G2) + λcSLcStyle
(6)

where λcP , λcyc and λcS are the weights given for the cycle-
perceptual, cycle-consistency and cycle-perceptual losses re-
spectively.

III. DATASETS AND EXPERIMENTS

The Cycle-MedGAN framework was evaluated on two
different tasks, PET to CT translation and the correction of
motion artifacts in MR. For PET-CT translation, a dataset of
the head region from 46 anonymized volunteers was acquired
using a joint PET-CT scanner (Siemens Biograph mCT). For

TABLE I: Quantitative comparison of unsupervised translation
techniques

Model
(a) PET-CT translation

SSIM PSNR(dB) VIF LPIPS
UNIT 0.8485 20.14 0.2057 0.6762

Cycle-GAN 0.8963 23.35 0.3831 0.2561
Cycle-MedGAN 0.9115 24.08 0.4275 0.2233

Model
(b) MR motion correction

SSIM PSNR(dB) MSE UQI
UNIT 0.6914 18.64 0.1239 0.6953

Cycle-GAN 0.8011 22.39 0.3432 0.3282
Cycle-MedGAN 0.8118 22.96 0.3513 0.3029

training, 1935 two-dimensional slices from 38 patients were
utilized while the remaining 420 slices from 8 separate patients
were used for validation. For the second application, T1-
weighted MR data for the head region was acquired for 17
anonymized volunteers using a 3T MR scanner (Siemens
Biograph mMT) with a fast spin echo sequence. Two different
scans were acquired for each volunteer, one with voluntary
rigid motion (head tilting) of the head and another under
resting conditions [29]. Another 980 slices from 14 patients
were used for training and 105 slices from the remaining 3
patients were used for validation. For both applications, the
resolution of extracted data slices was re-sampled from their
original resolutions to an isotropic voxel size of 1mm3 and
two-dimensional images of pixel dimensions 256× 256 were
extracted.

Analogous to Cycle-GAN, random shuffling was applied
between the different subjects in the collected datasets to
ensure no explicit pairing between the source and target do-
mains occur during the training procedure. The discriminator
from a BiGAN network was utilized as the feature extractor
network in all experimentations [30]. The BiGAN was pre-
trained on a separate dataset of whole-body CT data for image
reconstruction. This was conducted to extract plausible feature
maps which would improve the quality of translated images.

To evaluate the performance of the proposed framework,
qualitative and quantitative comparisons with other unsuper-
vised translation techniques were carried out. More specifi-
cally, the UNIT framework [22] and the Cycle-GAN [24] were
considered as performance baselines for the comparison. To
ensure faithful representation of the baseline methods, verified
open-source implementations were utilized along with the
recommended hyper-parameters in the original publications
[31], [32]. Besides the pre-trained feature extractor, the Cycle-

2019 27th European Signal Processing Conference (EUSIPCO)



Input UNIT Cycle-GAN Cycle-MedGAN Target

Fig. 3: Qualitative comparisons between the Cyclc-MedGAN framework and other unsupervised image translation techniques.
The first two rows depict the task of PET to CT translation and last two rows illustrate the correction of MR motion artifacts.

MedGAN framework has an identical architecture as the
Cycle-GAN framework which is described in details in [24].
The quantitative comparisons utilized the following metrics:
Peak Signal to Noise Ratio (PSNR), Structural Similarity
Index (SSIM) [33], Learned Perceptual Image Patch Similarity
(LPIPS) [34] and Visual Information Fidelity (VIF) [35]. All
models were trained using the ADAM optimizer and a batch
size of 64. Training was for 50 epochs, lasting approximately
24 hours, using an NVIDIA Titan X GPU.

IV. RESULTS AND DISCUSSION

The results of the proposed Cycle-MedGAN framework are
presented in Table I and Fig. 3 in comparison with UNIT and
Cycle-GAN. Qualitatively, the worse performance is exhibited
by the UNIT framework. For both medical datasets in the
comparative study, UNIT results in inhomogeneous global
deformations as well as substantial blurs and distortion in the
translated images. This is also reflected quantitatively, with
UNIT resulting in the worst scores in Table I across the
chosen metrics. In contrast, the resultant images produced by
Cycle-GAN framework have a global structure which closely
matches that of the target ground-truth images. However, finer
details are not accurately translated by Cycle-GAN, such
as the bone structures in the resultant CT images, and the
motion blurring due to rigid motion in MR is not completely
removed. The proposed Cycle-MedGAN framework builds

upon the traditional Cycle-GAN architecture by introducing
addition non-adversarial cycle losses to regulate the generator
architectures. This results in an enhanced visual quality in
the translated images (e.g. sharp edge delineation in MR
images). The resultant CT images have noticeably sharper
and more consistent bone structures compared to the other
frameworks. Additionally, motion blurring due to rigid motion
in MR is minimized. This enhancement in performance is
analogously reflected quantitatively in Table I with Cycle-
MedGAN surpassing the comparison baselines on all chosen
metrics.

Despite the added level of quality by the Cycle-MedGAN
framework, the proposed technique is not free from drawbacks.
First, the resultant images by the Cycle-MedGAN framework
potentially overlook important diagnostic information in the
translation process. Thus, the framework is not intended for
diagnostic applications but rather for post-processing tasks. An
example of such tasks is using the synthetic CT images for
PET attenuation correction or the calculation of organ vol-
umes from motion corrupted MR images. Additionally, phase
information contains vital information for motion correction
in MR. Therefore, in future studies, we plan on expanding
the framework with multi-channel three-dimensional inputs
for complex-valued data. Furthermore, we plan to expand
the comparison study to include performance on clinical
applications and the effect of each individual non-adversarial

2019 27th European Signal Processing Conference (EUSIPCO)



loss in comparison to different loss combinations.

V. CONCLUSION

Cycle-MedGAN is a new framework for unsupervised im-
age translation. It builds upon the widely utilized Cycle-
GAN framework with the additional utilization of new non-
adversarial cycle loss functions, namely the cycle-perceptual
loss and the cycle-style loss. The new loss functions use
intermediate feature maps, extracted from a pre-trained feature
extractor network, to direct the generator architectures to mini-
mize perceptual and textural discrepancies in the results. Quan-
titative and qualitative comparisons with other unsupervised
translation techniques indicate that the proposed framework
enhances the translated outputs for the tasks of PET to CT
translation and MR motion correction.

In the future, we plan to enhance the framework from
the architectural aspect by incorporating three-dimensional
complex-valued data. Additionally, the diagnostic performance
of the framework will be investigated by experienced radiol-
ogists conducting subjective evaluations of the results.
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