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Abstract—Multispectral imaging is widely used in many fields,
such as in medicine and earth observation, as it provides valuable
spatial, spectral and temporal information about the scene. It
is of paramount importance that the large amount of images
collected over time, and organized in multidimensional arrays
known as tensors, be efficiently compressed in order to be
stored or transmitted. In this paper, we present a compression
algorithm which involves a training process and employs a
symbol encoding dictionary. During training, we derive specially
structured tensors from a given image time sequence using
the CANDECOMP/PARAFAC (CP) decomposition. During run-
time, every new image time sequence is quantized and encoded
into a vector of coefficients corresponding to the learned CP
decomposition. Experimental results on sequences of real satellite
images demonstrate that we can efficiently handle higher-order
tensors and obtain the decompressed data by composing the
learned tensors by means of the received vector of coefficients,
thus achieving a high compression ratio.

Index Terms—Compression, multispectral image time series,
high-order tensors, CP decomposition, learning

I. INTRODUCTION

The acquisition of a large number of image sequences
characterizes many applications, such as functional brain
imaging studies [1], live cell microscopy [2], and satellite-
based Earth Observation [3]. Especially in satellite-based
Earth observation, a given scene can be observed repeatedly,
providing valuable spatial, spectral and temporal information,
like growth, maturation, or harvest of crops, which leads
to the generation of huge quantities of observations [4].
The copious amounts of images collected from the sensors
over time introduce considerable challenges in terms of data
storage and data transfer. Especially in remote sensing cases
where images are collected on board satellites or unmanned
aerial vehicles and need to be transferred to the ground-based
stations, an efficient compression algorithm is mandatory in
order to reduce bandwidth and increase the system lifetime.

Observations acquired over multiple time instances and
spectral bands can be formulated by means of high dimen-
sional data structures. For instance, a time series of grayscale
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images is a 3D object defined by one index for the temporal
dimension and two indices for the spatial variables, while
a time series of spectral images is a 4D object with an
additional variable for the wavelength. Representing such
high dimensional observations in a mathematically consistent
manner is accomplished using tensors, higher-order extensions
of vectors and matrices [5], [6].

In this paper, we propose a compression algorithm that
achieves a considerable compression ratio of high dimensional
data by appropriately exploiting their structure through tensor
decomposition. The proposed method involves a training pro-
cess, in which we derive specially structured tensors from a
given image time series using CANDECOMP/PARAFAC (CP)
decomposition [7], and a symbol encoding dictionary. During
run-time, tensors are mapped to learned decompositions and
the associated coefficients are quantized and encoded, as it is
illustrated in Figure 1.

In short, the key novelties of this work are the following.
• An end-to-end compression algorithm is proposed that

includes quantization and encoding of the information
data, making it directly applicable in real-world scenarios.

• A machine learning based algorithm is developed for the
compression of multidimensional data, by learning from a
training sample specially structured tensors that are used
during run-time, without requiring the transmission of all
the information but only a vector of coefficients.

• The performance of the proposed method is investigated
on 3D real data, as well as on 4D data since our method
can seamlessly handle high dimensional observations.

II. RELATED WORK

To compress image time series, both spatial and tempo-
ral correlations must be simultaneously removed, so typical
compression algorithms apply a 3D wavelet transform on the
full data cube [8], [9], or a combination of a 1D spectral
decorrelator, such as the Karhunen-Loeve Transform (KLT)
[10] or Principal Components Analysis (PCA) [11]. The above
methods usually are followed by JPEG2000 [12], which is
among the best-performing algorithms for 2D still image
compression. Although these methods offer significant gains
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Fig. 1. The compression process of the proposed method, which consists of the expression of a multispectral image time series Xt as a linear combination
of the learned tensors, and the quantization of the coefficients λλλt to b bits, using the symbols of the learned encoding dictionary.

in terms of compression ratio, increasing data-rates of the new-
generation sensors require even higher compression.

Analysis of high dimensional data using tensor models is an
active research topic in signal processing domains including
cyber-physical systems [13], wearable Internet-of-Things plat-
forms [14] and remote sensing [15] among others. In [16] a
compression-based nonnegative CP decomposition algorithm
was proposed for compression of hyperspectral image time
series where the input data array was represented by one or
a few arrays with reduced dimensions, computing their CP
approximation with compressed versions of the original factor
matrices. However, in their work, the spatial variables are
represented by a single index of the tensor and as such, they
cannot sufficiently capture the spatial characteristics of the data
and they cannot handle higher-order structures.

Other tensor-based approaches for compression of hyper-
spectral images are presented in [17], [18]. Specifically, a
compression algorithm based on the CP decomposition is
proposed in [17], in which a data cube can be compressed into
R rank-1 tensors. In this model, the parameter R indicates the
compression ratio. Similarly, a compression algorithm based
on the Tucker decomposition is proposed in [18], in which the
original tensor data is approximately decomposed into a core
tensor multiplied by a factor matrix along each mode. Thus, a
data cube in this model is compressed to the core tensor and
the factor matrices with compressed dimensionality in each
mode. However, the above models that have been applied only
on 3D hyperspectral images, require either the transmission
of all rank-1 tensors with their coefficients, or the core tensor
and the factor matrices, which is much more information than
the one required by our model. Specifically, in our method,
we learn the rank-1 tensors and we only need to transmit the
coefficients, achieving an extremely high compression ratio
with a good reconstruction quality.

III. TENSOR BASED OBSERVATION MODELING

An N -way or N th-order tensor X ∈ RI1×I2×···×IN is
defined as a multidimensional array, whereby the order of
a tensor is the number of its dimensions. A fundamental
property of tensors is the tensor rank, a generalization of
matrix rank. Specifically, considering that the outer product
of two vectors is a rank-1 matrix, we can define the matrix
rank as the minimum number of rank-1 matrices needed to

synthesize a given matrix. In a similar way, a rank-1 N -th
order tensor X ∈ RI1×I2×...×IN is the outer product of N
vectors a(n) ∈ RIn , n = 1, ..., N , with elements the product
of the corresponding vector elements, i.e.,

X = a(1) ◦· · · ◦ a(N), with xi1i2···iN = a
(1)
i1
· · ·a(N)

iN
, (1)

where in ∈ {1, ..., In}. For instance, a three-way rank-1 tensor
is the outer product of three vectors. Therefore, the rank of a
tensor X is defined as the minimum number of rank-1 tensors
needed to produce the original tensor.

A common framework for tensor computations is to turn
the tensor into a matrix, which is called matricization or
unfolding of the tensor [19], where for a given tensor X ∈
RI1×I2×...×In×...×IN , its mode-n matricization is denoted as
unfoldn(X ) = X(n) ∈ RIn×

∏
i6=n Ii and corresponds to a

matrix with columns being the vectors obtained by fixing all
indices of X except the n-th index. This procedure allows
the use of matrix factorization algorithms, like the SVD.
However, in doing so, the structure of the data is not preserved
and therefore the high dimensional relationships, e.g., across
neighbouring pixels or time instances, are lost.

A more appropriate approach involves expressing a tensor
of arbitrary rank as a linear combination of rank-1 tensors. The
CANDECOMP/PARAFAC (CP) decomposition represents an
N th-order tensor X ∈ RI1×I2×···×IN as

X =
R∑

r=1

λra
(1)
r ◦ a(2)r ◦· · ·a(N)

r = Jλλλ;A(1), ...,A(N)K, (2)

where R is a positive integer, A(n) = [a
(n)
1 a

(n)
2 · · · a(n)R ] are

the factor matrices, λλλ ∈ RR and a
(n)
r ∈ RIn , for r = 1, ..., R

and n = 1, ..., N . The matrix form of CP decomposition can
be obtained via the Khatri-Rao products as:

X(n) = A(n)G(A(N)�· · ·�A(n+1)�A(n−1)�· · ·�A(1))T ,

where G = diag(λ1, λ2, ..., λR) [5], [20]. Compared to matrix
decompositions, CP decomposition is unique under more
relaxed conditions, that only require the components to be
sufficiently different and their number reasonably large [21].

The minimum number R of components in an exact CP
decomposition of a given tensor, is the rank of the tensor. Un-
fortunately, there is no straightforward algorithm to determine
the rank of a given tensor; in fact, the problem is NP-hard
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[22]. However, in most applications, one is really interested
in fitting a model that has the essential or meaningful number
of components that we usually call the rank, and it is much
less than the actual rank of the tensor that we observe, due to
noise and sensor imperfections [5].

In order to compute approximate low-rank models of ten-
sor data, we minimize the Frobenius norm (i.e. the square
root of the sum of the squares of all elements) of the
difference between the given data tensor and its CP ap-
proximation. Since the computation of CP decomposition
is intrinsically multilinear, we can arrive at the solution
through a sequence of linear sub-problems as in the Al-
ternating Least Squares (ALS) framework [5], whereby the
least squares cost function is optimized for one compo-
nent matrix at a time, while keeping the other component
matrices fixed. Specifically, for the case of 4rd order ten-
sors, in order to estimate the factor matrices A,B,C,D
where A = A(1),B = A(2),C = A(3),D = A(4), from pos-
sibly noisy data X ∈ RI×J×K×T , we can adopt a least squares
criterion and then the problem becomes

min
A,B,C,D

‖X −
R∑

r=1

λrar ◦ br ◦ cr ◦ dr‖2F . (3)

The above model is non-convex in A,B,C and D. By fixing
B, C and D, it becomes (conditionally) linear in A. Similarly,
for the other factor matrices, using the matrix representations
of the tensor, we can update

A← argmin
A
‖X(1) −A((D�C�B)T ‖2F ,

B← argmin
B
‖X(2) −B((D�C�A)T ‖2F , (4)

C← argmin
C
‖X(3) −C((D�B�A)T ‖2F ,

D← argmin
D
‖X(4) −D((C�B�A)T ‖2F ,

until little, or no change in the factor matrices is observed.
Then, by normalizing the columns of A,B,C and D, we
obtain the weights λλλ.

IV. PROPOSED COMPRESSION METHOD

A. Training process

The compression method presented in this paper requires
a training process with a given image time series, before the
compression of new data that need to be transmitted. Specif-
ically, we assume that we have a time series of multispectral
images M∈ RI×J×K×T as training samples, where I and J
represent the spatial dimensions, K represents the number of
spectral bands and T the number of temporal instances, such
as days. We obtain the R rank-1 tensorsMr = ar◦br◦cr◦dr,
r = 1, ..., R, that synthesize the training sample M, by
minimizing

min
A,B,C,D

‖M−
R∑

r=1

λrar ◦ br ◦ cr ◦ dr‖2F (5)

using the ALS method that was described above, and obtain
the factor matrices A,B,C,D which are used in the subse-
quent compression of the acquired observations.

A crucial step for data transmission or storage is the need
for representation of the compressed data in a binary format,
which involves a coding algorithm. For a given number of
bits b, the coding algorithm maps each binary number to a
discrete set of 2b symbols, S = {q1, q2, ..., q2b}. To populate
the dictionary of symbols, we split the range of values of
the coefficients λλλ = [λ1, ..., λR] into 2b − 1 equal partitions
and we define as the set of symbols S of the dictionary
to be the boundaries of those partitions, qs, s = 1, ..., 2b,
where q1 and q2b are the minimum and the maximum values
of λλλ, respectively. The correspondence between the symbols
and their binary representation is the dictionary of the coding
algorithm, which is also estimated during the training process.

B. Run-time Compression and Decompression

Assuming that X1,X2, ...,Xt, ... ∈ RI×J×K×T are the test
samples, each of them being a multispectral image time series
contained by T time intervals, we express each test sample Xt

as a linear combination of the learned rank-1 tensors Mr =
ar ◦ br ◦ cr ◦ dr, r = 1, ..., R, i.e.,

Xt =

R∑
r=1

λtrar ◦ br ◦ cr ◦ dr, (6)

where the coefficients λλλt can be obtained through a least
squares estimation. Then, we quantize the vector of coeffi-
cients λλλt = (λt1 , .., λtR) to b bits, as we can see in Figure
1. Specifically, we use a uniform quantizer Q : R → S,
assuming that the set of symbols S = {q1, q2, ..., q2b} are
the quantization levels and cs = qs+qs+1

2 , s = 1, ..., 2b − 1
are the quantization boundaries. So, we obtain the quantized
vector of coefficients

λqλqλqt = [Q(λt1),Q(λt2), ...,Q(λtR)] = [λqt1 , λqt2 , ..., λqtR ],

which needs to be encoded, in order to be transmitted. There-
fore, we transmit only R numbers, instead of the whole image
time series Xt, achieving extremely high compression ratios.
As the final compression stage, we employ Huffman coding on
the quantized vector λqλqλqt, using the dictionary obtained from
the training process.

In order to decompress the received data λqλqλqt, we employ
the rank-1 tensors Mr = ar ◦ br ◦ cr ◦ dr, r = 1, ..., R,
obtained from the CP decomposition of the training sample
M. Therefore, the reconstructed image time series X ′

t will be

X
′

t =
R∑

r=1

λqtrar ◦ br ◦ cr ◦ dr, (7)

which is an efficient approximation of the test sample Xt, as
will be demonstrated in the experimental results Section. The
same algorithm can be applied for the case of third or any
higher-order tensors by utilizing the appropriate number of
factor matrices.
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V. EXPERIMENTAL RESULTS

The efficacy of the proposed compression algorithm is
evaluated over a publicly available dataset of satellite image
time series acquired by the MODIS satellite, over the region
of Cyprus [23], for 160 days, providing information about the
vegetation of the area. The dataset consists of 4D sequences of
color images of size 136× 278× 3× 160, and 3D sequences
of grayscale images of size 136 × 278 × 160, with the last
dimension being the number of days. In our experiments, we
train our model with an image time series and we test it
by examining sliding temporal windows, such that each test
sequence consists of the same number of days as in the training
sequence. For instance, if the window size is 30, then the first
30 days of the dataset are used for the training process and the
remaining 130 days for testing, by sliding a temporal window
of size 30 days.

The recovery performance is measured in terms of the
Normalized Mean Square Error (NMSE) which is defined as

NMSE =
‖Xt −X

′

t ‖22
‖Xt‖22

,

where Xt and X ′

t are the original and the reconstructed signal,
respectively.

An important parameter of the proposed method is the
tensor rank, i.e., the number of rank-1 components identified
by the CP decomposition during training. Figure 2 reports on
the reconstruction quality for each time series as a function of
values of rank on third and fourth order tensor data. The results
indicate that using larger rank leads to better performance. In
addition, we observe that the performance of our algorithm is
getting worse over time. The same behavior is observed when
the order of the tensor is increasing.
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Fig. 2. Reconstruction quality for different values of rank, on third and fourth
order tensor data.

Another parameter that was examined is the effect of the
temporal window size, i.e., the number of days used to produce
each time series. Figure 3 presents the NMSE for different
window sizes, on third and fourth order tensor data, using 8
bits and rank 100. Notably, longer window sizes offer higher

quality reconstruction and more stable performance compared
to smaller ones.
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Fig. 3. Reconstruction quality for different temporal window sizes, on third
and fourth order tensor data.

Our study also emphasizes on the impact of the number of
bits used for the quantization of the coefficients vector. We
performed experiments on fourth order tensor data, using a
temporal window of size 30 days, and rank 100. The results
reported in Table I indicate that as the number of bits increases,
the reconstruction error decreases. However, the improvement
is negligible, demonstrating a robust behavior.

TABLE I
RECONSTRUCTION QUALITY FOR SEVERAL DAYS AS A FUNCTION OF THE

NUMBER OF BITS, ON FOURTH ORDER TENSOR DATA.

Number of
Bits

NMSE
1st Day 20th Day 50th Day 78th Day

4 0.2518 0.2937 0.3528 0.3712
6 0.2493 0.2916 0.3498 0.3681
8 0.2490 0.2913 0.3496 0.3680

To examine the efficacy of our method on different com-
pression rates, we performed experiments on third order tensor
data, with the results presented in Table II. As it was expected,
the more the bits per pixel per band (bpppb), the better the
performance of our algorithm. However, there is a minor
improvement of the reconstruction since the compression ratio
is extremely high in each case.

TABLE II
RECONSTRUCTION QUALITY FOR DIFFERENT NUMBER OF BPPPB, ON

THIRD ORDER TENSOR DATA.

bpppb
0.0003 0.0007 0.0011 0.0014

NMSE 0.3948 0.2751 0.2658 0.2649

Finally, we compared our algorithm with state-of-the-art
compression algorithms, namely pure JPEG2000, and Discrete
Wavelet Transform (DWT) and PCA spectral decorrelation
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followed by JPEG2000. Figure 4 presents the NMSE for
several days under investigation, on third and fourth order
tensor data, with window size 30 days and rank 100, using
7.0532 × 10−4 and 2.3511 × 10−4 bpppb. Note that for the
case of fourth order tensor data, the results from competing
methods correspond to the application of compression on a
single color image at a time, as it has been designed only for
3D data. Compared to the other methods, our technique can
handle better higher-order tensor data as it provides a better
approximation of the original data.

Time (Days)

0 20 40 60 80 100

N
M

S
E

0

0.5

1

1.5

2

2.5

3

Our method

JPEG2000

JPEG2000+DWT spectral decorrelation

JPEG2000+PCA spectral decorrelation

Time (Days)

0 20 40 60 80 100

N
M

S
E

0

0.5

1

1.5

2

2.5

3

Our method

JPEG2000

JPEG2000+DWT spectral decorrelation

JPEG2000+PCA spectral decorrelation

Fig. 4. Reconstruction quality for different compression methods, on third
(top) and fourth order (bottom) tensor data.

VI. CONCLUSION

In this work, we presented a new approach for the com-
pression of high dimensional observations, focusing on the
case of color image time series. Our approach achieves ex-
tremely high compression ratios by exploiting the structure
of multidimensional data through tensor decomposition learn-
ing. A major benefit of the proposed scheme is that it can
directly be extended to arbitrary high dimensions, providing a
mathematically concrete solution for simultaneously encoding
multiple sources of observations. An extension of the proposed
algorithm involves the incremental update of the learned rank-
1 tensors that are used in the compression of observations.
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