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Abstract—We propose a novel greedy algorithm for `0-based
sparse signal recovery, inspired by Iterative Hard Thresholding,
which alternates a gradient descent step towards minimizing
the sparsity error with a projection step on the affine solution
space y = Ax. We provide a theoretical guarantee based on
Restricted Isometry Property for successful recovery of exact
sparse signals, in the noiseless case, which does not depend on
the singular values spectrum of the dictionary. This improves
signal recovery by providing robustness in case of ill-conditioned
dictionaries, as learned and coherent dictionaries tend to be.
Simulation results on noiseless exact-sparse recovery indicate
improvements compared to similar algorithms, especially in the
case of ill-conditioned dictionaries.

I. INTRODUCTION

Sparse signal recovery [1], [2] is a well known problem that
has been studied extensively in the last two decades. Given a
signal x ∈ Rn that is sparse, ‖x‖0 = s, the goal is to recover
it from a reduced set of m linear measurements arranged as
rows in a acquisition matrix A ∈ Rm×n, possibly affected by
additive noise e:

y = Ax+ e

The signal x is recovered from the smaller dimensional
measurement vector y, in general, via an optimization problem
seeking to find the sparsest solution to the equation system:

x = argmin
x
‖x‖p subject to ‖y −Ax‖2 ≤ ε.

The recovery problem can be formulated in a different number
of ways, all expressing the fundamental goal of finding the
sparsest representation of y within the dictionary A. Usually,
the `0 or the `1 norm are used as a sparsity measure. In
this paper we focus on the noiseless case, which means the
quadratic constraint becomes an exact constraint y = Ax, and
we use the `0 norm. In this case the optimization problem
becomes:

x = argmin
x
‖x‖0 subject to y = Ax. (1)

The recovery problem carries over when signal x is not itself
sparse in the time domain, but has a sparse representation γ
in some basis or overcomplete dictionary D, i.e. x ≈ Dγ,
and thus we have y ≈ ADγ. In this case, first the sparse
decomposition γ is obtained as the solution of the core
optimization problem, where the product Aef = A · D acts
as an effective dictionary or acquisition matrix for the sparse

representation vector. The signal x itself is then found from
its representation γ. As the core optimization is the same, in
this paper we take (1) to cover both cases, with x denoting the
sparse signal and A the dictionary or the effective dictionary,
depending on the problem at hand.

In general, recovery is successful only if the columns of
A satisfy certain incoherence properties [3]. The Restricted
Isometry Property (RIP) [4] is a well known way of capturing
this behavior. The matrix A is said to satisfy RIP of order s
with constant δs if, for all s-sparse vectors x, it holds that:

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22

Alternatively, this can be expressed as a bound on the spectral
norm of all submatrices As obtained from s columns of A [5]:

‖I −AT
s As‖2→2 ≤ δs,

where ‖ ·‖2→2 designates the spectral norm of a matrix. For a
matrix with small RIP constant, all submatrices of s columns
are close to orthonormal, which keeps the norm ‖Ax‖2 close
to that of x. A dictionary having a small enough RIP constant
is a sufficient condition for the success of most of the sparse
recovery algorithms in literature, see e.g.[5].

There are a large number of approaches for solving (1).
Of particular interest for this paper is the well known Itera-
tive Hard Thresholding (IHT) algorithm [6]. IHT repeatedly
performs the following operation:

xk+1 = Hs(x
k + µ ·AT (x−Axk)), (2)

where Hs(·) is the hard thresholding operator, that keeps only
the s absolute largest entries of a vector and zeroes all the
others. The iteration (2) consists of an update step followed
by a thresholding step. The update equation

vk = xk + µ ·AT (x−Axk)

represents a gradient descent step of size µ, from the current
xk towards minimizing the error term ‖y − Axk‖22. The
resulting vector vk is then hard-thresholded, producing an
improved s-sparse candidate, and the process is repeated.
An adequate choice of a step-size is important for ensuring
convergence, and thus adaptive ways of choosing µ have been
proposed [7].
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II. THE ITERATIVE AFFINE PROJECTION ALGORITHM

Our approach starts from observing that in IHT the hard
thresholding operator Hs(·) actually accomplishes two things
simultaneously:

(i) it determines the candidate support set at the current
iteration, T k, consisting of the locations of the largest
absolute values, and

(ii) it projects orthogonally the input vector on the subspace
ITk spanned by the canonical basis vectors correspond-
ing to T k.

In general, having a candidate support set T k obtained
after step (i), the quality of any candidate solution xk (not
necessarily s-sparse itself) is determined by two error terms:

E(xk) = ‖y −Axk‖22 + λ‖xk
Tk
c
‖22 (3)

The first term measures how accurate is the input signal y
represented, whereas the second term quantifies how much of
the candidate solution extends outside the presumed support.
Here, the set T k

c denotes the cosupport, i.e. set of atoms outside
the candidate support T k, and the notation xTk

c
designates the

restriction of x to the entries from the cosupport. Throughout
the paper we refer to the two terms as the representation error
and the sparsity error of the candidate xk. The weighting
factor λ reflects the relative importance attributed to these
errors. Note that an s-sparse exact solution x∗, if it exists,
satisfies both terms exactly so that the overall error is zero.

In IHT, the hard thresholding operation ensures that the
sparsity error of xk will be rigorously 0, via orthogonal
projection on the canonical subspace T k, resulting in an exact
s-sparse signal. The non-zero representation error is tolerated,
and is used for the gradient descent step that follows.

In this paper we propose taking the alternative route. Instead
of enforcing the sparsity term via orthogonal projection, we
choose to enforce the representation term ‖y − Axk‖22 = 0,
via orthogonal projection on the affine solution space of
y = Ax. The result is a vector xk having a non-zero sparsity
error ‖xk

Tk
c
‖22, which is then reduced by gradient descent.

This mirrors the behavior of IHT, but with the sparsity and
representation error terms exchanged.

We refer to this algorithm as Iterative Affine Projection
(IAP), summarized as Algorithm 1. An IAP iteration starts
with a current candidate solution xk from the affine solution
space of y = Ax, and ends with the next candidate solution
xk+1 from the same affine space. All candidate solutions live
in this affine space, i.e. they satisfy the equation y = Ax.

1. Gradient descent. Since the current solution xk satisfies
the representation term exactly, it must be non s-sparse
(otherwise it is already the final solution). A gradient
descent step of size µ is taken to reduce its sparsity
error ‖xk

Tk
c
‖22:

vk ← xk − µ · xk
Tk
c

The smallest entries of xk are shrinked with a factor
of µ, while the s largest absolute values are preserved.

Algorithm 1 Iterative Affine Projection (IAP)

Input: A = system matrix
Input: N = orthonormal basis for the null space of A
Input: y = input signal

1: k ← 0
2: x0 ← A†y
3: while not finished do
4: Gradient descent step (shrink) to reduce sparsity error

vk ← xk − µ · xk
Tk
c

5: Project back on affine solution space

xk+1 ← x0 +NTNvk

6: end while

Fig. 1: Graphical depiction of the IAP iteration with µ = 1,
in a 3D space. Step 1: xk is hard thresholded to vk. Step 2:
xk is projected on the affine solution space, resulting in the
next candidate

Note that if µ = 1 this amounts to hard-thresholding the
vector xk, but this value is not mandatory.

2. Orthogonal projection. Bring the result vk back to the
affine solution space via orthogonal projection:

xk+1 ← x0 +NTNvk,

Here x0 = A†y is the least-squares solution of the
system, and N denotes a matrix whose rows form a
basis of the null space of A. For simplicity, we take the
rows of N to be orthonormal, such that NTN represents
the projection operator on the null space of A. The affine
solution space of y = Ax consists of the least-squares
solution x0 plus all the vectors from the null space.

Replacing vk with its definition leads to the convenient
single-line update equation covering both steps:

xk+1 ← x0 +NTN(xk − µ · xk
Tk
c
)

← xk − µ ·NTNxk
Tk
c
.

(4)

Here, we have used the fact that xk is itself in the affine
solution space, so it holds that xk = x0 +NTNxk.

A conceptual graphical representation of a IAP iteration is
depicted in Fig. 1, for a step size µ = 1. Candidate xk lives
in the affine solution space of y = Ax. It is shrinked towards
the candidate support T k, which may be different than the true
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support T . Here, µ = 1 so the result vk is actually s-sparse,
but for different sizes of µ the vector vk can be outside the
subspace spanned by T k. Then xk+1 is the projection of vk on
the affine solution space, advancing towards the true solution
x∗. The true solution x∗ lives in the same affine space, and it
is s-sparse itself.

III. THEORETICAL GUARANTEE FOR EXACT RECOVERY

Consider a signal y having an s-sparse representation
y = Ax?, ‖x?‖0 = s. We derive a theoretical guarantee for
successful recovery of x? in the noiseless case, based on the
RIP constant of order 2s, not of the dictionary itself but of its
right singular matrix. In this proof, we use a step size µ = 1.
The proof is inspired by the analysis in [5].
Theorem III.1. Let x∗ be an unknown n-dimensional s-sparse
signal, ‖x∗‖0 = s. Let A be a m × n matrix, m ≤ n, and
y = Ax. Consider an SVD decomposition A = USV T , with
V T in reduced form (of size m× n).

If the RIP constant of order 2s of V T satisfies

δV
T

2s <
1

2
(5)

then the IAP algorithm converges linearly to the true solution
x∗.

Proof. Consider the candidate solution at step k, xk, the step
towards the s-sparse solution, vk, the next solution at step (k+
1), xk+1, and the true solution x∗. We refer to the graphical
representation in Fig. 1 for an illustration.

The proof is based on comparing the lengths of the follow-
ing vectors: (i) xk+1 − x∗, (ii) vk − x∗, and (iii) xk − x∗.
In particular we focus on showing that ‖xk+1 − x∗‖2 <
‖vk − x∗‖2 < ‖xk − x∗‖2.

For proving the first inequality, observe that the difference
x∗ − xk+1 is the projection on the null space of the vector
difference x∗−vk, since xk+1 is the orthogonal projection of
vk on the affine solution space, and x∗ is a point belonging
to the same affine space. We have thus

‖xk+1 − x∗‖2 = ‖NTN(vk − x∗)‖2
= ‖(I −A†A)(vk − x∗)‖2,

where we have rewritten the null space projection operator
NTN in a more convenient form (I −A†A).

Considering the SVD decomposition A = USV T , we can
rewrite A†A = V V T . Now, observe that both vectors on the
right side, vk and x∗, are s-sparse. With their common support
defined as L = supp(xk) ∪ supp(x∗), |L| ≤ 2s, in the right
side term of the equation we can restrict V to the support set
L , as follows:

‖xk+1 − x∗‖2 = ‖(I − VLV T
L )(vk − x∗)‖2,

We use the equivalence δV
T

|L| = ‖(I − VLV
T
L )‖2→2 to further

rewrite:

‖xk+1 − x∗‖2 = ‖(I − VLV T
L )(vk − x∗)‖2

≤ ‖(I − VLV T
L )‖2→2‖(vk − x∗)‖2

≤ δV
T

2s ‖(vk − x∗)‖2

The proof of the second inequality is as follows: since vk is
the hard thresholding of xk, it is closer to xk than any other
s-sparse vector, including x∗. Then ‖xk − vk‖2 ≤ ‖xk −
x∗‖2. Considering now the triangle inequality in the triangle
(xk,vk,x∗), the length of side vk − x∗ is smaller than the
sum of the other two, and since ‖xk−x∗‖2 is larger, we have:

‖vk − x∗‖2 ≤ 2‖(xk − x∗)‖2

Putting both inequalities together we have:

‖xk+1 − x∗‖2 ≤ δV
T

2s ‖vk − x∗)‖2
≤ 2δV

T

2s ‖xk − x∗‖2

Hence, if V T has a RIP constant

δV
T

2s <
1

2
,

the error between the new candidate xk+1 and the true solution
x∗ decreases at every step with at least a constant factor, and
the algorithm converges linearly to the true solution x∗.

The theoretical guarantee (5) shows that the IAP algorithm
depends on the RIP properties of the tight frame V T formed
by the most significant right singular vectors of the dictionary
matrix A. As such, given an SVD decomposition A = USV T ,
the algorithm is insensitive to the singular values spectrum S.
This “spectral insensitivity” is beneficial for learned and coher-
ent dictionaries which are usually significantly ill-conditioned,
having wide-ranging singular values. This feature is specifi-
cally tested in Tests 2 and 3 from Section IV.

IV. SIMULATION RESULTS

We test the exact recovery of s-sparse signals with IAP
against well known `0-based iterative algorithms: Itera-
tiva Hard Thresholding (IHT), Orthogonal Matching Pursuit
(OMP) [8], [9], and Approximate Message Passing (AMP)
[10].

The first test is a synthetic test with i.i.d. random generated
Gaussian dictionaries of size m× n, thus very close to being
tight frames. We plot the phase transition image depicting the
percentage of exactly recovered sparse signals as a function of
the compression ratio δ = m

n and relative sparsity ρ = s
m . For

each (δ, ρ) pair we generate a random Gaussian dictionary,
20 exact s-sparse signals x of size n = 200, and we attempt
recovery of the sparse signals x from the measurements vector
y = Ax with the algorithms under test. Exact recovery is
defined as a having a relative error less than 10−6 of the norm
of the true x. The percentage of exactly recovered signals is
depicted graphically, with pure white indicating 100%, pure
black 0%, and shades of gray — intermediate values.

Fig.3 depicts the phase transitions plots obtained with IAP,
IHT, OMP and AMP. For IAP we use step size µ = 1,
for IHT we use a variant with adaptive step size [7], since
it consistently provides better results. The results show IAP
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Fig. 2: Exponentially decaying spectrum of singular values
used for the random dictionaries in Test 2

to have above average results, but all the algorithms perform
rather well.

The second tests verifies the spectral insensitivity of IAP, in
a compressed sensing scenario. For each (δ, ρ) pair we gener-
ate a random Gaussian dictionary D of size n×n = 200×200,
but we replace the singular values with an exponential decay-
ing function as in Fig.2. The atoms are then normalized. We
generate random s-sparse data as exact linear combinations of
the atoms of D, x = Dγ, ‖γ‖0 = s, which are then multiplied
with a random Gaussian acquisition matrix P of size m× n.
We then attempt recovery of the sparse decomposition vector
γ, from which we reconstruct the signals x themselves. Exact
recovery is again defined as a having a relative error less than
10−6 of the norm of the true x.

The results obtained in Fig.4 clearly prove that IAP is es-
sentially immune to the ill-conditioned nature of a dictionary,
whereas the other algorithms are significantly affected.

Finally, in a third test we replace the random dictionaries
with a dictionary of 8 × 8 pixel image patches learned with
the K-SVD [11] algorithm from the USC-SIPI Miscellaneous
dataset, which better illustrates a real-life dictionary with
coherence and possible dependencies between the atoms. The
dictionary size is 64× 80. As before, from the dictionary we
generate exact-sparse signals as random combinations of the
atoms, and we test the algorithms’ recovery performance of
the signals from random projections.

The results in Fig.5 show that exact recovery of sparse
signals with the learned dictionary is much more problematic.
However, when it comes to comparing the algorithms, IAP
clearly surpasses both IHT and OMP in this test, with a smaller
margin over AMP as well.

V. CONCLUSIONS

This paper presents Iterative Affine Projection, a proposed
sparse recovery algorithm similar to Iterative Hard Thresh-
olding, but with a different internal handling of the sparsity
and representation error terms. The algorithm is based on
iterative projections on the affine solution space of the system,
alternating with gradient descent steps for improving sparsity.

We prove a theoretical guarantee for the success of noiseless
recovery of sparse signals, which is based on a RIP condition
on the right singular matrix of the dictionary, and thus is

independent of the dictionary’s singular value spectrum. This
feature provides increased robustness to ill conditioned dictio-
naries, which are often encountered with learned dictionaries.

Noiseless recovery tests against some of the well-known
greedy algorithms in literature show notable gains for various
types of dictionaries. Significant improvements are observed
in the case of ill-conditioned dictionaries, but also smaller
improvements even in the case of well-conditioned ones. The
results suggest that the proposed algorithm may be a viable
solution for sparse signal recovery in general.
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Fig. 3: Test 1. Percentage of exact-sparse signals reconstructed perfectly with different recovery algorithms, using random
Gaussian dictionaries: (a) the proposed Iterative Affine Projection, (b) Iterative Hard Thresholding, (c) Orthogonal Matching
Pursuit and (d) Approximate Message Passing. White indicates 100% recovered signals and black 0%.
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Fig. 4: Test 2. Percentage of exact-sparse signals reconstructed perfectly with different recovery algorithms, using Gaussian
dictionaries with exponentially decaying singular values: (a) the proposed Iterative Affine Projection, (b) Iterative Hard
Thresholding, (c) Orthogonal Matching Pursuit and (d) Approximate Message Passing. White indicates 100% recovered signals
and black 0%.
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Fig. 5: Test 3. Percentage of exact-sparse signals reconstructed perfectly with different recovery algorithms, using a image patch
dictionary learned with K-SVD: (a) the proposed Iterative Affine Projection, (b) Iterative Hard Thresholding, (c) Orthogonal
Matching Pursuit and (d) Approximate Message Passing. White indicates 100% recovered signals and black 0%.
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