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Abstract—A new signal-selective wide-band cross-ambiguity
function is introduced. It performs a sinusoidally weighted
correlation of a signal with a time-scaled and delayed version of a
reference signal. If the reference signal is almost cyclostationary
and the frequency of the weighting sinusoid is one of its cycle
frequencies properly scaled, the new function, referred to as the
wide-band cyclic cross-correlation function, exhibits the signal
selectivity properties that are typical of cyclostationarity-based
techniques. The new function is exploited for the localization and
speed estimation of a wide-band moving source whose signal
impinges on two sensors in a severe noise and interference
environment.

Index Terms—cyclostationarity, wide-band ambiguity function,
moving source localization

I. INTRODUCTION

In radar/sonar problems, the detection and the range and

velocity estimation of a moving source or target lead to con-

sider the narrow-band cross-ambiguity function (NB-CAF) of

the received signal and a replica of the transmitted waveform

available at the receiver [11, Chap. 10]. The NB-CAF also

plays a central role in passive radar/sonar problems when

signals are received on two separate sensors in order to

estimate source direction and speed [5].

The NB-CAF is a function of delay and frequency shift. It

appears in the detector/estimator structure provided that the so

called narrow-band condition is satisfied. That is, if the prod-

uct of signal bandwidth and length of the observation interval

is much smaller than the ratio of the medium propagation

speed and the relative radial speed between the receiver and

the target or source [8, Sec. 7.5], [11, Sec. 9.1]. In such a case,

the Doppler effect can be modeled just as a frequency shift

of the carrier and does not influence the complex envelope of

the received signal.

If the narrow-band condition is not satisfied, then a time-

stretch in the complex envelope of the received signal must

be accounted for and the wide-band cross-ambiguity function

(WB-CAF) must be considered for detection/estimation [13].

The WB-CAF is a function of delay and time-scale factor.

In the case of signals received on two sensors, assuming the

validity of the narrow-band condition, the time-difference-of-

arrival (TDOA) and frequency-difference-of-arrival (FDOA)

are estimated by locating the peak of the magnitude of the

NB-CAF. Then, from these estimates, the source direction and

speed are derived [10]. If the narrow-band condition is not

satisfied, then source direction and speed are obtained from

the TDOA and the time-scale-ratio (TSR) that are estimated

by locating the peak of the magnitude of the WB-CAF [7].

The detector/estimator structures based on the NB-CAF and

the WB-CAF are derived by a maximum likelihood (ML)

criterion assuming a stationary Gaussian noise model for

the additive disturbances. If strong nonstationary interfering

signals contaminate the received useful signals, NB-CAF and

WB-CAF based estimators perform poorly. In such a case,

interference tolerant estimation techniques exploit the signal

selectivity properties of cyclostationarity-based algorithms [4],

[9]. In passive radar and sonar problems, several techniques

have been proposed in [3] for TDOA estimation and in [6]

for TDOA and FDOA estimation. In all these techniques the

narrow-band condition is assumed to be valid in modeling the

received signals.

In this paper, a new signal selective wide-band cross-

ambiguity function is introduced. It is called the wide-band

cyclic cross-correlation function (WB-CCCF) and performs

a sinusoidally weighted cross-correlation of one signal and

a stretched version of another signal which is called the

reference signal.

The WB-CCCF is wide-band since a possible wide-band

Doppler effect (that is, a time-scale stretch) in the first signal

with respect to the second one can be appreciated. The WB-

CCCF is signal selective since the frequency of the sinusoidal

weighting function can be chosen to be a properly scaled cycle

frequency of the reference signal if it is almost-cyclostationary

(ACS). In such case, the contribution of possible disturbance

signals added to the two signals of interest are canceled, even

if these disturbance signals are correlated, provided that they

do not exhibit joint cyclostationarity at the considered cycle

frequency.

As an example of application, the WB-CCCF is exploited

to estimate TDOA and TSR of the signal transmitted by a low

Earth orbit (LEO) satellite and received by two sensors far

apart separated, in the presence of strong possibly intentional

interference impinging on both sensors. At low values of

the signal-to-interference ratio (SIR), the proposed method

significantly outperforms the estimation methods based on the

NB-CAF and WB-CAF and a competitive cyclostationarity-

based technique.

The paper is organized as follows. The model for the signal
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received from a moving source is presented in Section II. The

new WB-CCCF is introduced in Section III and its exploitation

for time-scale factor and delay estimation is described in

Section IV. The problem of passive wide-band moving source

location is addressed in Section V. Numerical results are

presented in Section VI and conclusions are drawn in Section

VII.

II. RECEIVED SIGNAL FROM A WIDE-BAND MOVING

SOURCE

In this section, the model for the received signals coming

from a wide-band moving source and impinging on two

sensors is described. This model constitutes the motivation

to introduce the WB-CCCF in the next section.

Let x̃(t) be the complex envelope signal emitted by a

wide-band source with bandwidth B and carrier frequency

fc in relative motion with respect to two fixed sensors and

let r̃1(t) and r̃2(t) be the received complex envelope signals

on the two sensors (Fig. 1). If the relative radial speeds

vi, i = 1, 2, between the moving source and each sensor can be

considered constant within the observation interval, we have

[8, Sec. 7.3.3]

r̃i(t) = ỹi(t) + ñi(t) i = 1, 2 (1)

with

ỹi(t) = ai x̃(si(t− τi)) e
j2πνit . (2)

In (1), ỹi(t) is the useful signal and ñi(t) is the disturbance

signal. In (2), the time-scale factor si = 1 − vi/c and the

frequency shift νi = (si − 1)fc describe the Doppler effect,

τi is the propagation delay, and ai is a complex gain that

accounts for propagation attenuation and phase shift.

interferer

x̃(t) moving source

r̃1(t)

r̃2(t)

Fig. 1. A moving source transmits the signal x̃(t). Two sensors receive
the signals r̃i(t), i = 1, 2, containing also correlated interference.

If the so called narrow-band condition

BT ≪ c

|vi|
=

1

|1− si|
(3)

holds, where c is the medium propagation speed and T the

duration of the observation interval, then in (2) the time-scale

factors si can be considered equal to 1 in the arguments of the

complex envelopes (but not in the complex exponents) and the

Doppler effect reduces to a frequency shift of the carrier, [8,

Sec. 7.5] which is a commonly adopted model [11, Sec. 9.1].

If ỹ1(t) is assumed as reference signal, then ỹ2(t) can be

expressed as

ỹ2(t) = a△ ỹ1(s△(t− τ△)) e
j2πν△t (4)

where s△ , s2/s1 is the TSR, ν△ , ν2 − s△ν1 is

the FDOA, τ△ , τ2 − τ1/s△ is the TDOA, and a△ ,

(a2/a1) e
j2πν1(s△τ2−τ1) is the complex-gain ratio (CGR).

Starting from estimates of TDOAs τ△ taken from several

pairs of sensors, parameters to locate the source can be

obtained [10]. In addition, starting from estimates of TSRs

s△ or FDOAs ν△, the source velocity can be estimated [11,

Chap. 10], [13].

Eqs. (1) and (2) can be equivalently written in terms of

analytic signals as

ri(t) = yi(t) + ni(t) (5)

where

yi(t) , ỹi(t) e
j2πfct = bi x(si(t− τi)) (6)

is the analytic signal corresponding to the complex envelope

ỹi(t), and similarly ri(t), xi(t), and ni(t). In (6), bi ,

ai e
j2πfcsiτi .

If y1(t) is assumed as reference signal, then y2(t) can be

expressed as

y2(t) = b△ y1(s△(t− τ△)) (7)

where b△ , a△ ej2πfcs△τ△ .

III. THE WIDE-BAND CYCLIC CROSS-CORRELATION

FUNCTION

Let x(t) and y(t) be two complex-valued finite-power

signals. The new signal-selective wide-band cross-ambiguity

function, dubbed here as the (conjugate) wide-band cyclic

cross-correlation function (WB-CCCF) is defined as

χyx(∗)(σ, α, τ)

,

〈
E
{
y(t) x(∗)(σ(t− τ))

}
e−j2πασt

〉
t

(8)

where (∗) is an optional complex conjugation and 〈·〉t ,

limT→∞(1/T )
∫ T/2

−T/2
(·) dt. The WB-CCCF is the (conjugate)

cyclic cross-correlation function at cycle frequency σα of the

signal y(t) ad a time-scaled version of x(t) with time-scale

factor σ. Both presence and absence of complex conjugation

in (8) are of interest for complex signals.

Let us consider the input and output analytic signals, x(t)
and y(t), respectively, of the Doppler channel between trans-

mitter and receiver in relative motion with constant relative

radial speed (see (6)):

y(t) = b0 x(σ0(t− τ0)) . (9)

By replacing (9) into (8), we have

χyx(∗)(σ, α, τ) = b0 χxx(∗)

( σ

σ0
, α, σ0(τ − τ0)

)
e−j2παστ0

(10)

where χxx(∗)(σ, α, τ) is defined according to (8) with y ≡ x
and is referred to as (conjugate) wide-band cyclic autocorre-

lation function.

If x(t) is ACS, we have

E
{
x(t1) x

(∗)(t2)
}
=

∑

α∈A

Rα
xx(∗)(t1 − t2) e

j2παt2 (11)
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where A is the countable set of (conjugate) cycle frequencies

and

Rα
xx(∗)(τ) ,

〈
E
{
x(t+ τ) x(∗)(t)

}
e−j2παt

〉
t

(12)

is the (conjugate) cyclic autocorrelation function of x(t)
at (conjugate) cycle frequency α [4]. In such a case, (10)

specializes into

χyx(∗)(σ, α, τ) = b0R
α
xx(∗)(σ0(τ−τ0))e

−j2πασ0τ δσ−σ0 (13)

which is nonzero only for α ∈ A and σ = σ0. By taking

y ≡ x, and hence b0 = 1, σ0 = 1, and τ0 = 0 in (9), we have

that (13) specializes into

χxx(∗)(σ, α, τ) = Rα
xx(∗)(τ) e

−j2πατ δσ−1 . (14)

A function similar to the WB-CCCF (8) is defined in [12].

The function in [12] however, contains a complex exponential

with frequency shift due to the Doppler effect on the carrier

frequency of the analyzed signal and not related to a signal

cycle frequency in order to obtain signal selectivity.

IV. TIME-STRETCH FACTOR AND DELAY ESTIMATION

In this Section, a procedure for TSR and TDOA estimation

is proposed. Note that this procedure is not obtained by

an optimum criterion and is an ad hoc estimator. However,

it generalizes to the case of finite-power ACS signals the

approximately optimum technique proposed in [7] for finite-

energy signals.

For every fixed value of σ, the function χyx(∗)(σ, α, τ) is

a (conjugate) cyclic cross-correlation function. If y(t) and

x(σt) are jointly ACS, under mild assumptions expressed

in terms of summability of cross-cumlants of the processes

y(t) and x(σt), a consistent estimate χ̂yx(∗)(σ, α, τ) of the

(conjugate) WB-CCCF (8), obtained by a measurement over

a finite observation interval, is given by the (conjugate) cyclic

cross-correlogram [8, Sec. 2.4]

χ̂yx(∗)(σ, α, τ) ,
1

T

∫ T/2

−T/2

y(t) x(∗)(σ(t− τ)) e−j2πασt dt .

(15)

Assume that σ0 ∈ S, where S , [σd,min, σd,max] ∪
[σu,min, σu,max] is the double interval of values of σ in which

the source time-scale factor has to be searched. The set S
should not contain the point σ = 1 if signals coming from

fixed sources must be filtered out.

Let α = α0 be a known or estimated (conjugate) cycle

frequency of x(t) such that the magnitude of the (conjugate)

cyclic autocorrelation function |Rα0

xx(∗)(τ)| peaks at τ = 0.

This condition is verified for at least one cycle frequency by

most communication signals [2, Chap. 12].

Accounting for (13), it follows that the parameters σ0 and

τ0 can be estimated as those that maximize the magnitude

of χ̂yx(∗)(σ, α, τ) when (σ, τ) ranges in the scale-range cell

C , S × [τmin, τmax]. For α0 = 0, such an estimator reduces

to that proposed in [7] which is based on the maximization of

the magnitude of the WB-CAF.

V. PASSIVE WIDE-BAND MOVING SOURCE LOCATION

With reference to model (5)–(7) for the analytic signals

received on the two sensors, and accounting for (10), the WB-

CCCF of r1(t) and r2(t) with (∗) = ∗ is given by

χr2r∗1
(σ, α, τ)

=
〈
E {r2(t) r∗1(σ(t − τ))} e−j2πασt

〉
t

= b△ χy1y∗

1

( σ

s△
, α, s△(τ − τ△)

)
e−j2παστ△

+ χn2y∗

1
(σ, α, τ)

+ b△ χy1n∗

1

( σ

s△
, α, s△(τ − τ△)

)
e−j2παστ△

+ χn2n∗

1
(σ, α, τ) . (16)

Under the assumption that the disturbance signals n1(t) and

n2(t) are zero mean and independent of x(t), we have

χn2y∗

1
(σ, α, τ) = χy1n∗

1
(σ, α, τ) = 0 . (17)

Under the assumption that n1(σt) and n2(t) do not exhibit

joint (conjugate) cyclostationarity with (conjugate) cycle fre-

quency σα, we have

χn2n∗

1
(σ, α, τ) = 0 . (18)

The mild condition (18) means that the Loève bifrequency

cross-spectrum [8, Sec. 1.1.2] of n1(t) and n2(t) does not

have spectral masses concentrated on a line with slope 1/σ
and intercept α in the bifrequency plane (f1, f2). In partic-

ular, n1(t) and n2(t) are not jointly spectrally correlated [8,

Chap. 4] such that one of the support curves of the Loève

bifrequency cross-spectrum is f2 = f1/σ − α.

Let x(t) be ACS. If conditions (17) and (18) are satisfied,

thus from (16), accounting for (13) and (14), we have

χr2r∗1
(σ, α, τ) = b△ |b1|2 Rα/s1

xx∗

(
s1 s△(τ − τ△)

)

e−j2πα(s△τ+τ1) δ(σ/s△)−1 (19)

which is nonzero for σ = s△ and α/s1 = α0, where α0 is a

cycle frequency of x(t).
If the cycle frequency α0 is such that |Rα0

xx∗(τ)| peaks at

τ = 0 we have that

(σ̂△, τ̂△) = arg max
(σ,τ)∈C

∣∣∣∣χ̂r2r∗1
(σ, α, τ)

∣∣∣∣ (20)

provides a TSR and TDOA estimation technique based on

noisy measurements on the two sensors, which is inherently

immune to the effects of noise and interference, regardless

of the temporal and spectral overlap of signal-of-interest and

disturbance. The proposed technique is highly tolerant to noise

and interference in practice, providing satisfactory perfor-

mance at arbitrarily low levels of signal-to-noise ratios (SNR)

and SIR, provided that a sufficiently large observation interval

is considered for the WB-CCCF estimate, the performance

being degraded only by the cycle leakage effect [9, Sec. 9].

The smaller are SNR and SIR, the larger data-record length is

needed.
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Note that classical cyclostationarity-based techniques [3],

[6] whose signal models are based on the validity of the

narrow-band condition (3) have a lower bound for the min-

imum SNR and SIR for which satisfactory performance can

be achieved. In fact, even if these techniques are inherently

tolerant to the effects of disturbances, the data-record length

cannot exceed a maximum value which is determined by (3).

VI. NUMERICAL RESULTS

Numerical experiments are carried out to corroborate the

effectiveness of the TSR and TDOA estimation technique

based on the WB-CCCF in a highly corruptive noise and

interference environment and in a moving scenario such that

the narrow-band condition (3) is not satisfied.

The moving source is a LEO satellite. Its altitude is h =
200 km and the orbital speed is vo = 28061.5 km h−1.

The transmitted signal is a long-code binary direct-sequence

spread-spectrum (DSSS) signal with number of chip per bit

Nc = 64, chip period Tc = 0.12 µs, bit period Tp = NcTc,

and carrier frequency fc = 2 GHz. The chip pulse is rect-

angular with 50% duty cycle and the approximate bandwidth

is B ≃ 2/Tc = 16.5 MHz. The complex-envelope received

signals are uniformly sampled with sampling frequency fs =
4B = 66 MHz. The data-record length is T = NbTp, where

Nb is the number of processed bits. The distance between

sensors is L = 150 km and the projection of the satellite

on the line determined by the two receivers lies between

the two sensors. The values of TSR, FDOA, and TDOA are

s△ = 1 + 1.7922 · 10−5, ν△ = 35.84 kHz = 0.0005431/Ts,

and τ△ = −0.058068 ms = −3832.49Ts, where Ts = 1/fs is

the sampling period.

Each disturbance term n1(t) and n2(t) contains circular

white Gaussian noise (WGN) with SNR = 0 dB in the

band (−fs/2, fs/2) and interference with SIR = –3 dB. The

interference on each sensor is given by the superposition of

two pure tones at frequencies 2/Tp and
√
2/Tp and a jamming

binary phase-shift keying (BPSK) signal with carrier frequency

fc and symbol period Tpi = Tp/2. The same interference

signal impinges on each sensor with different time-scale,

frequency shift, and delay. On each sensor, the power spectrum

of the interfering BPSK signal completely overlaps that of the

useful DSSS signal. In addition, the interfering terms on the

two sensors are correlated.

The cycle frequency α = s1α0 is estimated on the first

sensor with the technique of [1]. The received signals are

sampled after frequency conversion at f ′
c = 0.25 fs.

The proposed method is compared with the classical esti-

mation methods based on the NB-CAF and WB-CAF. Specifi-

cally, the FDOA and TDOA are estimated by maximizing with

respect to (ν, τ) the magnitude of the NB-CAF [11, Chap. 10]

NBCAF(ν, τ) ,

∫ T/2

−T/2

r̃2(t) r̃
∗
1(t− τ) e−j2πνt dt . (21)

The TSR and TDOA are estimated by maximizing with respect

to (σ, τ) the magnitude of the WB-CAF [13]

WBCAF(σ, τ) ,

∫ T/2

−T/2

r2(t) r
∗
1(σ(t− τ)) dt . (22)

In Figs. 2–4, results for a typical single realization are

reported for Nb = 214 symbols of the DSSS signal. Due to

the signal selectivity of the WB-CCCF, the magnitude of the

WB-CCCF presents a peak centered in a point of the (σ, τ)
plane close to the true TSR and TDOA values (Fig.2). In

contrast, starting from the magnitudes of the NB-CAF and

WB-CAF, wrong estimates are obtained due to the presence

of the interfering terms (Figs. 3 and 4). In particular, the peak

due to the BPSK interfering signal is higher than the peak of

the useful DSSS signal and gives rise to a significant bias in

the estimates.

Fig. 2. Magnitude of the WB-CCCF as function of σ and τ/Ts.

Fig. 3. Magnitude of the NB-CAF as function of ν/fs and τ/Ts.

The performance analysis is made in the presence of

WGN (SNR = 0 dB) and BPSK interference correlated on

the two sensors for increasing values of SIR (Fig. 5). For

comparison purpose, also the SPECCOA method with com-

pensated frequency shift [6] is considered since it is one

of the robustest cyclostationarity-based TDOA and FDOA

estimation techniques. The normalized sample root mean-

squared error (RMSE) is reported for (top) TSR and (bottom)

TDOA estimates. 100 Monte Carlo trials have been carried
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Fig. 4. Magnitude of the WB-CAF as function of σ and τ/Ts.

out. The TSR is considered only for the the WB-CCCF and

WB-CAF based methods since only these methods model the

Doppler effect in terms of the time-scale factor. The FDOA

estimates obtained by the NB-CAF based technique and the

SPECCOA with compensated frequency shift technique are

not considered since the narrow-band condition is not satisfied.

TDOA estimates are reported for all considered methods.

Fig. 5. Normalized RMSE as function of SIR for (top) TSR and
(bottom) TDOA. (▽) NB-CAF; (�) WB-CAF; (∗) SPECCOA with
compensated frequency shift; (⋆) WB-CCCF.

At low values of SIR, the proposed WB-CCCF based

estimation method has significantly better performance with

respect to all competitors due to the signal selectivity of

the method. In contrast, for high values of SIR the method

based on the WB-CAF has better performance since it is an

approximate maximum likelihood estimate in WGN [7]. For

high values of SIR, the RMSE of all methods reaches a floor

since the data-record length is finite and fixed. The RMSE

of SPECCOA and NB-CAF methods is higher since, for the

considered value of Nb, the narrow-band condition (3) is not

satisfied (BT = 32768 and 1/|1− s△| ≃ 55795).

VII. CONCLUSION

A new signal-selective wide-band cross-ambiguity function

is introduced. It is referred to as the wide-band cyclic cross-

correlation function (WB-CCCF) since it is the cyclic cross-

correlation of a signal and a time-scaled version of another

signal named the reference signal. If the two signals are those

on two sensors receiving the signal coming from a wide-band

moving source, the WB-CCCF can be exploited to estimate the

time-difference-of-arrival and the time-scale ratio of the two

signals. Form these estimates, possibly obtained by more sen-

sor pairs, the source can be localized and its velocity estimated.

The estimator based on the WB-CCCF exhibits the typical

signal selectivity properties of cyclostationarity-based signal

processing techniques. It is suitable to be exploited when the

so called narrow-band condition is not satisfied and, hence, in

the presence of large observation intervals, large bandwidths

and in high velocity scenarios. Simulation results show that

the estimator based on the WB-CCCF outperforms classical

estimation methods based on the narrow-band and the wide-

band cross-ambiguity functions. In addition, it outperforms

classical cyclostationarity-based methods for large data-record

lengths when the narrow-band condition is not satisfied.
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