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Abstract—Phase retrieval is an inverse problem which con-
sists on estimating a complex signal from intensity-only measure-
ments. Recent works have studied the problem of retrieving the
phase of a high-resolution image from low-resolution phaseless
measurements, under a setup that records coded diffraction
patterns. However, the attainable resolution of the image depends
on the sensor characteristics, whose cost increases in propor-
tion to the resolution. Also, this methodology lacks theoretical
analysis. Hence, this work derives a super-resolution model
from low-resolution coded phaseless measurements, that in
contrast with prior contributions, the attainable resolution of the
image directly depends on the resolution of the coded aperture.
For this model we establish that an image can be recovered
(up to a global unimodular constant) with high probability.
Also, the theoretical result states that the image reconstruction
quality directly depends on the design of the coded aperture.
Therefore, a strategy that designs the spatial distribution of
the coded aperture is developed. Simulation results show that
reconstruction quality using designed coded aperture is higher
than the non-designed ensembles.

I. INTRODUCTION

PHASE retrieval (PR) is a common problem in diffractive
optical imaging (DOI) [1], where intensity-only mea-

surements are sensed. Recently, a coded diffraction patterns
(CDP) approach, which modifies the traditional DOI system
introducing an optical element called coded aperture has
been proposed [2], [3]. This element modulates the object
to then record the intensity of its coded diffraction patterns
at the sensor, as illustrated in Fig. 1, [3], [4]. In fact, if the
spatial configuration of the coded aperture is changed, this
acquisition scheme allows multiple projections of the same
scene.

One of the main limitations in a DOI typical setup
is the spatial resolution, which is limited by the optics
and the sensor resolution [5], [6]. In particular, the super-
resolution phase retrieval problem, which consists of esti-
mating a high-resolution image from low-resolution phaseless
measurements, has been previously studied in [7], under the
setup illustrated in Fig. 1. Specifically, this work developed
a computational super-resolution phase retrieval algorithm
that estimates a high resolution image from noisy phaseless
measurements using a forward-backward method. Addition-
ally, this method has a filtering step, based on the block-
matching 3D filtering (BM3D) [8], to reduce the effect of the
noise. However, the attainable resolution of the image in this
approach still depends on the sensor characteristics, whose
cost increases in proportion to the resolution. Further, this
method does not provide image recovery guarantees.

This paper derives a super-resolution model from low-
resolution coded phaseless measurements, that in contrast
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Fig. 1. Optical system to obtain coded diffraction patterns.

with previous works, the attainable resolution of the image di-
rectly depends on the spatial resolution of the coded aperture.
Additionally, we establish that any image can be recovered
(up to a global unimodular constant) with high probability.
This theoretical result shows that image reconstruction quality
directly depends on the spatial structure of the coded aperture
through the projections. Therefore, a strategy to design the
coded aperture based on temporal and spatial correlation is de-
veloped in this paper. Specifically, the proposed design criteria
generate uniform spatially distributed coded apertures that
equality sense each pixel of the image along the projections.
Simulation results suggest that the proposed coded aperture
designed overcomes random distributions. Specifically, the
designed coded apertures attain a gain of up to 5dB of PSNR
compared with random coded apertures.

II. SUPER-RESOLUTION PHASE RETRIEVAL PROBLEM

The phase retrieval problem from coded diffraction pat-
terns is formulated as the finding of a complex image o(x, y)
from phaseless measurements of the form

y`(kx, ky) ∝ |F{H`(x, y)o(x, y)}|2, (1)

where ` = 1, · · · , L indexes the projections, H`(x, y) models
the `-th configuration of the coded aperture, with (x, y),
(kx, ky) as the spatial and frequency coordinates, respectively.
In a discrete form, the pixels of the sensor and coded aperture
are assumed to be squared. Specifically, let ∆s and ∆õ

be the pixel sizes of the sensor and the modulated object
õ`(x, y) = H`(x, y)o(x, y) at the `-th projection, respectively.
Given the relationship presented in [9], [10] to avoid signal
overlapping at a distance z, the sampling period of the object
must satisfy the following equality

∆õ =
λz

M∆s
, (2)

where M ×M are the number of pixels of the sensor. Under
this setup, the discrete version of (1) can be expressed as

y`s,r =

∣∣∣∣∣∣
M∑
k,l

õk,le
2jπ( ks

M + lr
M )

∣∣∣∣∣∣
2

, (3)
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where õk,l is the discrete form of õ(x, y) and y`s,r are the
discrete measurements. Further, considering ∆h as the pixel
size of the coded aperture, its transmittance function can be
expressed as

H`(x, y) =
∑
k′,l′

H`
k′,l′ rect

(
x

∆h
− k′, y

∆h
− l′

)
, (4)

where H`
k′,l′ represents the value at the pixel k′, l′ for the

`-th projection. Usually, the pixel sizes of the coded aperture
∆h and the sensor ∆s are equal. For this reason if ∆õ > ∆h

a high-resolution object can be obtained from low-resolution
measurements [11]. Specifically, it is convenient to assume
that ∆õ = r∆h where r ≥ 1 is an integer up-sampling
factor, then the super-resolution phase retrieval problem can
be modeled as

y`s,r =

∣∣∣∣∣∣
M∑
k,l

(k+1)r∑
s=kr

(l+1)r∑
r=lr

H`
s,ros,r

 e2jπ( ks
M + lr

M )

∣∣∣∣∣∣
2

, (5)

which can be seen as a discrete version of (1). Thus, express-
ing (5) in matrix form it can be obtained that

y` = |FDH`x|2, ` = 1, · · · , L, (6)

where y` ∈ Cn is the vectorization of the low-resolution ob-
served measurements at the `-th projection, F ∈ Cm×m is the
discrete Fourier transform matrix, H` ∈ Cn×n is a diagonal
matrix whose entries are H`

s,r and x = [o1,1, · · · , oM,M ]T

represent the target image, and D ∈ Rm×n represents a down-
sampling matrix defined as

(D)i,k =


1
r2m
, if i = bk(modN)

rm
c+ 1 and

k ≤ Nrm + irm
0, otherwise.

. (7)

Now, if g = [ỹ1, · · · , ỹL] is defined as the global
measurement vector, we have

g = |Ax|2, (8)

where the matrix A is the vertical concatenation of the
matrices F̃DH` for ` = 1, · · ·L given by

A =
[
(F̃DH1)H , · · · , (F̃DHL)H

]H
. (9)

Considering the formulation in (8), the next section provides
theoretical guarantees to recover a high-resolution image from
low-resolution coded diffraction patterns.

III. RECOVERY THEORETICAL GUARANTEES

Taking the vector form of the super-resolution model in
(8) into account, each measurement gi can be expressed as

gi = |aHi x|2 = aHi xxHai, (10)

where ai is the i-th row of the matrix A. Let H : Sn×n →
RmL be a linear mapping, where Sn×n is the space of self-
adjoint matrices, defined as

H(W) = [aH1 Wa1, · · · ,aHmLWamL]T . (11)

From (8) and (11) it can be observed that g = H(xxH).
Therefore, in order to guarantee that the signal x can be
recovered from the measurements in (10), the linear operator
H(·) must be injective. With this formulation, Theorem III.1
shows that any signal x can be reconstructed if the set of
coded apertures is properly designed. In order to prove Theo-
rem III.1, we remark that this work assumes that the entries of
H` are independent and identically distributed (i.i.d) copies
of a random variable d which satisfy the following definition.

Definition III.1. (Admissible Random Variable). A discrete
random variable obeying |d| ≤ 1, is said to be admissible.

Theorem III.1. Fix any δ ∈ (0, 1) and the set of coded
apertures {H` : ` = 1, · · · , L} with i.i.d entries of an
admissible random variable d. If for some constant c > 0

matrix P =
L∑
`=1

HH
` DHDH` satisfies

‖P− cI‖2∞ ≤ δ, (12)

where L ≥ c0n for some sufficiently large constant c0 > 0,
with I as the identity matrix, then we have that

P
(

1

cmL
‖A‖2∞ ≤ 1 + δ

)
≤ 1− ne−c1mLε

2

. (13)

for some constant c1 > 0. Also, with the same probability

(1− δ)‖W‖1 ≤
1

cmL
‖H(W)‖1 ≤ (1 + δ)‖W‖1, (14)

for all positive semidefinite matrices W.

Proof: See Appendix A.

Notice that Theorem III.1 essentially proves that the high-
resolution image x can be recovered from low-resolution
coded diffraction measurements if (12) is satisfied, which di-
rectly depends on the spatial distribution of the coded aperture
and the super-resolution factor. This result provides that the
set of coded apertures has to be designed in order to better
recover the target image x. Considering this observation, the
following section provides an strategy to design the set of
coded apertures that seeks to better satisfy the condition (12).

IV. CODED APERTURE DESIGN

Notice that the theoretical condition in (12) shows that the
set of coded apertures defines the concentration of measure
of the largest eigenvalue of the sensing matrix A. Therefore,
the structure of matrix P is analyzed in order to determine
a design strategy for the set of coded apertures. Specifically,
given the decimation matrix D with a down-sampling factor
r, it can be noticed that

(
DHD

)
i,k

=


1
r2 , if i = bk(modN)

r c+ 1 and
k ≤

(
b i
rmc+ 1

)
Nr

0, otherwise
. (15)

Observe that (15) can be decomposed as

DHD =
1

r2m
I + R, (16)
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where R contains the off-diagonal terms of DHD. Then,
taking (16) into account, P can be equivalently expressed
as

P =
L∑
`=1

HH
` DHDH` =

1

r2m

L∑
`=1

HH
` H`︸ ︷︷ ︸

V1

+
L∑
`=1

HH
` RH`︸ ︷︷ ︸
V2

.

(17)

Given the structure of P in (17), it can be observed that
(12) can be satisfied if V1 = cI, and V2 = 0 for some
imposed constant c > 0, where 0 represents the zero matrix.
More precisely, considering the diagonal structure of H`,
the non-zero elements of the V1 term in (17) only depend
on the spatial distribution of the coded aperture through the
projections and the non-zero elements of V2 depend on the
super-resolution factor r as follows

(V2)i,k =


1
r2

∑L
`=1(H`)

∗
i,i(H`)k,k if i = b k(modN)

r
c+ 1 and

k ≤
(
b i
rm
c+ 1

)
Nr for i 6= k

0 otherwise
.

(18)
where w∗ represent the conjugate version of w. Thus, impos-
ing the conditions, V1 = cI, and V2 = 0 , they lead to the
following design criteria:

(a) Temporal correlation: Condition V1 = cI for some
c > 0 can be accomplished if each pixel of the image is
modulated for all the coding elements of d, along the L-
projections.

(b) Spatial separation: In practical terms one can mini-
mize the term V2 building a set of coded apertures with an
r × r equi-spaced distribution of the coding elements, since
R is the matrix that contains the off-diagonal terms of DHD
as it is illustrated in (18) .

Taking this design criteria into account, recent works have
developed some strategies to design the sensing matrix [12],
[13]. Specifically, [13] minimizes the upper bounds of the
Gershgorin theorem of a given matrix, which in this case is
P. This process generates a spatial uniform distribution of
the coding elements within the coded apertures ensuring that
V1 = cI, for some c > 0 and V2 ≈ 0. Then, in this work we
follow the optimization strategy developed in [13] to design
the set of coded apertures, which can be formulated as

min
{H`}

∥∥∥∥∥1Tn
L∑
`=1

(HH
` DHDH`)− (U/n)1n

∥∥∥∥∥
2

2

+

∥∥∥∥∥
L∑
`=1

(HH
` DHDH`)1n − (U/n)1n

∥∥∥∥∥
2

2

, (19)

where 1n ∈ Rn denotes the vector whose entries are ones,
and U is a constant. This optimization problem is solved using
a greedy algorithm [13]. The first term in (19) handles the
sum per column of P that indicates the number of times a
pixel of the image is sensed. Additionally, since each row
of P indicates the number of image pixels measured by a
sensor, the design criteria in (19) provides an uniform sensing
as illustrated in Fig. 2, for an admissible random variable

d = {1, 0}. In addition, the proposed coded aperture design
prevents the formation of clusters of size r × r of a same
coding element, as is illustrated in Fig. 2.

Fig. 2. Visual comparison between a designed and non-designed coded
aperture for two projections with d = {0, 1} as the random variable.

V. PHASE RETRIEVAL RECONSTRUCTION ALGORITHM

A high number of PR algorithms are available in the liter-
ature [14], [15], [16], [17], [18]. In particular, this work uses
The Smoothing Projected Gradient Phase Retrieval Method
(SPGPR)[15] since it requires less number of measurements
and exhibits faster computational speed compared with com-
petitive alternatives in the state-of-the-art[15]. This method
overcomes the non-smoothness of the amplitude-based objec-
tive proposed in [14], optimizing a cost function of the form

min
r,ϕ,x∈Cn

f(x, µ) =
1

Lm

mL∑
i=1

(
ϑµ(|aHi x|)−√gi

)2
, (20)

where the function ϑµ : R+ → R+, which is defined as
ϑµ(w) =

√
w2 + µ2, with µ ∈ R++, smooths the term

|aHi x|. Notice that if µ = 0, then (20) reduces to the non-
smooth formulation proposed in [14]. In practice, µ is a
tunable parameter that decreases at each iteration.

Algorithm 1 Algorithm to estimate x

1: Input: constants τ, γ, γ1 ∈ (0, 1), and the number of
iterations S1.

2: Initial point x(0) =

√∑mL
i=1 gi

mL x̃(0), where x̃(0) is the

leading eigenvector of Y0 := 1
|I0|
∑
i∈I0

aia
H
i

‖ai‖22
given by

the power iteration method.
3: for s = 0 : S1 − 1 do
4: x(s+1) ← x(s) − τ∂f(x(s), µ(s))
5: if ‖∂f

(
x(s+1), µ(s)

)
‖2 ≤ γµ(s) then

6: µ(s+1) = γ1µ
(s)

7: else
8: µ(s+1) = µ(s)

9: end if
10: end for
11: Output: x(S1)

Algorithm 1 summarizes the method to solve (20). Specif-
ically, in line 2, this method uses the orthogonal-promoting
initialization proposed in [18]. This initialization consists on
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calculating x(0), which is the leading eigenvector x̃(0) of the
matrix

Y0 :=
1

|I0|
∑
i∈I0

aia
H
i

‖ai‖22
,

scaled by the quantity λ0 :=

√∑mL
i=1 gi

mL , i.e, x(0) = λ0x̃
(0),

where the set I0 contains the values of k associated with the
bmL6 c largest values of |aHi x|2/‖ai‖2. The notation |I0| is the
cardinality of the set I0, which is usually chosen as bmL6 c,
where bwc denotes the largest integer number less than w.
Also, [18] guarantees that the initial guess x(0) is close to
the solution with high probability.

The outcome of the initialization step is refined using a
gradient descent strategy based on the Wirtinger derivative as
introduced in [16], computed in Line 4, which is defined as

∂f(x, µ) =
1

Lm

mL∑
i=1

(
aHi x−√gi

aHi x

ϕµ(|aHu,ix|)

)
ai. (21)

Finally, from line 5 to 9, the value of µ decreases if
‖∂f

(
x(s+1), µ(s)

)
‖2 ≤ γµ(s) is satisfied.

VI. EXPERIMENTAL RESULTS

This section numerically evaluates the performance of
the designed coded apertures following the proposed strat-
egy. The metric used was the recovery error computed as
relative error := dist(w,x)

‖x‖2 , where x is the underlying signal
and the distance between two complex values is defined as

dist(w1,w2) = min
θ∈[0,2π)

‖w1e
−jθ −w2‖2. (22)

Three different uniform admissible random variables d1 =
{0, 1}, d2 = {−1, 1} and d3 = {−1, 1,−j, j} were tested.
The diffraction patterns of a simulated crystal structure called
Rhombic Dodecahedron are the tested images of size 256 ×
256. All simulations were implemented in Matlab 2017a on
an Intel Core i7 3.41Ghz CPU, with 32 GB RAM.

In order to verify that the proposed design reduce δ, which
lead to better estimation of the true signal, the minimum
constant δ in (14) are presented in Table I, varying the super-
resolution factor r, when L = 3. Specifically, observe that
the attained value of δ obtained with the designed coded
apertures is smaller than random distribution of the coded
aperture. These numerical tests validate that the proposed
design strategy allows a better estimation of a high-resolution
image from low-resolution coded diffraction measurements.

TABLE I. VALUE OF δ USING DESIGNED CODED APERTURES FOR
RANDOM VARIABLES d1, d2 AND d3 , WHEN L = 4 VARYING r

δ d1 d2 d3

r = 2
Proposed 0.0151 0.1283 0.0219
Random 0.0243 0.1304 0.0235

r = 4
Proposed 0.0547 0.2281 0.1157
Random 0.1216 0.2498 0.1215

r = 8
Proposed 0.3750 0.7105 0.6200
Random 0.6748 0.7514 0.6256

Fig. 3. Relative error of the returned initialization using designed and non-
designed coded apertures when the number of projections is varied.

In addition, the relative error of the returned initialization
(Line 2, Algorithm 1) for the three random variables and
r = 2 and r = 4 are summarized in Fig. 3. Notice
that the designed coded apertures generate a more accurate
initialization of the true image compared with non-designed
ensembles for any diffraction zone and for all d1, d2 and
d3 and the super-resolution factors. We provide these results
since the initialization is required to guarantee convergence
of Algorithm 1 [15].

Finally, Fig. 4 illustrates the reconstructed magnitude and
phase obtained using random and designed coded apertures,
for L = 4 and r = 2. Notice that the quality of the reconstruc-
tion obtained using designed coded apertures provide a more
detailed image compared with random ensembles. Specifically
the designed coded apertures attain a gain of up to 5dB of
Peak-Signal-to-Noise-Ration (PSNR) compared with random
coded apertures. These experiments provide the effectiveness
of the design strategy to retrieve a high-resolution image from
low-resolution coded diffraction patterns.

Fig. 4. Reconstructed images using random and designed coded apertures
via Algorithm 1.

VII. CONCLUSION

This paper studied the super-resolution phase retrieval
problem from coded diffraction patterns, where a mathemat-
ical model was derived. Further, theoretical recovery guaran-
tees for a high-resolution image from low-resolution phaseless
measurements were provided establishing that the set of coded
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apertures need to be designed through the projections in
order to better reconstruct the scene image. Thus, a strategy
to design the coded aperture based on temporal correlation
and spatial separation was developed. Numerical experiments
were conducted to evaluate the performance of the proposed
method for different admissible random variables. The pro-
posed design was compared with random distribution showing
better results for any super-resolution factor. Specifically the
designed coded apertures attain a gain of up to 5dB of PSNR
compared with random coded apertures.

APPENDIX A
PROOF OF THEOREM I

Proof: Before proving the theorem, let us introduce some
notation that will be useful for the proof. Let Tx be the set of
symmetric matrices of the form Tx = {W = xwH +wxH},
which may be interpreted as the tangent space of the manifold
of all rank-1 Hermitian matrices at the point xxH .

Let W ∈ Tx, with rank at most two. For a normalized
eigenvector of W, the eigenvalue decomposition can be
expressed as W = λ1bb

H + λ2vv
H , with nonnegative

eigenvalues λ1 and λ2. Observe that from the definition of
the linear map Hu(·) in (11) we have that

‖Hu(W)‖1 =
mL∑
i=1

∣∣λ1|hi,ub|2 + λ2|hi,uv|2
∣∣

≤ (|λ1|+ |λ2|)‖Hu‖2∞ = ‖W‖1‖Hu‖2∞,

(23)

in which the first and second inequalities are obtained using
the triangular inequality, and the last claim with the fact that∑
j |λj | = ‖W‖1. On the other hand, notice that from the

definition of Hu, it can be obtained that

‖Hu‖2∞ = λmax
(
HH
u Hu

)
=

∥∥∥∥∥
L∑
`=1

M̃H
` DHDM̃`

∥∥∥∥∥
2

∞

= ‖P‖2∞ , (24)

where λmax(·) denotes the largest eigenvalue of a matrix.
Additionally, assuming the condition in (12) holds for L ≥
c0n, for some sufficiently large constant c0 > 0, then from
Theorem 5.44 in [19] it can be obtained that

P
(

1

cmL
‖Hu‖2∞ ≤ 1 + δ

)
≤ 1− ne−c1mLε

2

, (25)

for some constant c1 > 0. Thus, combining (23) and (25), the
right side of the inequality, in (14) is expressed as

1

cmL
‖Hu(W)‖1 ≤ (1 + δ)‖W‖1, (26)

with probability at least 1− ne−c1mLε2 .

On the other hand, since (25) holds, then from Lemma
5.36 in [19] it can be obtained that

1

c
‖Hu(W)‖1 =

1

c

(
λ1‖Hub‖22 + λ2‖Huv‖22

)
≥ (1− δ)(λ1 + λ2) = (1− δ)‖W‖1,

(27)

with probability at least 1−ne−c1mLε2 , where the last equality
comes from considering that W is positive semidefinite. Thus,
from (27) it get

1

cmL
‖Hu(W)‖1 ≥

1

mL
(1− δ)‖W‖1, (28)

Finally, combining the left side of (26) and the right side of
(28), the result in (14) holds.
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