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Abstract—Generative adversarial network (GAN) has been
successfully developing as a generative model where the artificial
data drawn from the generator are misrecognized as real samples
by a discriminator. Although GAN achieves the desirable perfor-
mance, the challenge is that the mode collapse easily happens in
the joint optimization of generator and discriminator. This study
copes with this challenge by improving the model regularization
by means of representing the weight uncertainty in GAN. A
new Bayesian GAN is formulated and implemented to learn a
regularized model from diverse data where the strong modes are
flattened via the marginalization and the issues of model collapse
and gradient vanishing are alleviated. In particular, we present
a variational GAN (VGAN) where the encoder, generator and
discriminator are jointly estimated according to the variational
Bayesian inference. The experiments on image generation over
two tasks (MNIST and CeleA) demonstrate the superiority of
the proposed VGAN to the variational autoencoder, the standard
GAN and the Bayesian GAN based on the sampling method. The
learning efficiency and generation performance are evaluated.

Index Terms—generative adversarial networks, Bayesian learn-
ing, variational autoencoder, computer vision

I. INTRODUCTION

Generative adversarial network (GAN) [1]–[10] is known

a generative model which allows approximate estimation of

new data. GAN carries out the data generation procedure

based on a two-player game between two neural networks. A

generator model that synthesizes a data sample which can fool

a discriminator model. Discriminator is trained to distinguish

the synthesized sample from the true sample via an adversarial

process. This approach avoids assuming the explicit data

distribution and simply adopts the stochastic gradient descent

training. The generative model through a learned GAN can

directly serve as a density model of the training data. Sampling

is simple for an efficient implementation. The network accepts

the random noise as input and produces new samples in line

with the observed training data. In the literature, the variational

autoencoder (VAE) [11] was a well-known generative model

which optimized the variational likelihood of training data and

led to the meaningful reconstruction based on a lower bound of

log likelihood for fitting model to data. However, new images

synthesized by VAE were blurry. The regularization issue in

VAE was not well treated with the fixed model parameters. In

[12], the Bayesian neural network was proposed by incorpo-

rating the probabilistic weights in training of neural network

parameters. Such an approach can produce the probabilistic

guarantees on prediction performance through the learned

parameters of weights from training samples. In general,

the neural network is powerful to approximate a universal

continuous function while the probabilistic model allows the

uncertainty modeling of parameters for data generation.

This paper presents a new Bayesian framework for GAN

which is motivated by the integrated idea from GAN, VAE and

Bayesian neural network. By maximizing the variational lower

bound of log likelihood under the setting of GAN, we develop

a variational GAN which is capable of exploring the posterior

over parameters as well as generating the realistic synthe-

sized samples. The uncertainty of parameters is considered to

capture different modes in data manifold. Such a variational

GAN provides a more compact and efficient realization than

the Bayesian GAN [13], which was implemented by sampling

method from multiple parameter sets. Experiments on image

generation are conducted to evaluate the performance of the

varational Bayesian GAN with respect to other GANs.

II. ADVERSARIAL AND BAYESIAN LEARNING

A. Generative adversarial network

Generative adversarial network (GAN) conducts an adver-

sarial learning for a generator and a discriminator. The objec-

tive of generator is to synthesize the samples resembling real

samples while the objective of discriminator is to distinguish

real samples from synthesized ones. Let x be a real sample

drawn from data distribution p(x) (or pdata(x)) and z be a

random noise sample from an arbitrary distribution p(z). In a

vanilla GAN, p(z) is from a standard Gaussian N (0, I). Let

G and D be the generator and discriminator, respectively. The

generator takes z as an input and would like to produce an

output sample x̂ = G(z) which has the same distribution as

x. Denote the distribution of generator G(z) as pgen(x). The

discriminator D estimates the probability that an input sample

is drawn from p(x) rather than pgen(x). Ideally, D(x) = 1 if

x ∼ p(x) and D(x) = 0 if x ∼ pgen(x). Construction of GAN

corresponds to run a minimax optimization to fulfill a two-

player game for a joint training in accordance with V (G,D)

min
G

max
D

Ex∼p(x)[logD(x)] + Ex∼pgen(x)[log(1−D(x))]

(1)

which is seen as the negative cross entropy error function

for a binary classification problem. D(x) reflects a posterior

probability of classifying a sample x. Basically, an optimal

discriminator is estimated to achieve the worst performance

when classifying the samples from pdata(x) and pgen(x).
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Therefore, the maximization over V (G,D) is run to train the

discriminator while the minimization is performed to estimate

the generator. Such a minimax optimization encourages the

generator G to produce the sample x to fit p(x) so as to fool

discriminator D with the generated samples. Generator G and

discriminator D are constructed by using adversarial learning

based on the fine-tuning from the binary classification of the

samples either from true distribution p(x) or from prior distri-

bution p(z). Both G and D are trained via the backpropagation

algorithm. Basically, GAN is seen as a deterministic machine

where the uncertainties in G and D are disregarded.

In general, GAN performs well in characterizing the local

structure in generated samples but may not catch precisely

the global structure or the data distribution. In [14], GAN

was combined with the variational autoencoder (VAE) [11]

to compensate this weakness and balance the characterization

between local and global features. Such a hybrid VAE and

GAN was constructed by an encoder, a generator and a

discriminator which were jointly trained according to the

adversarial loss as well as the reconstruction loss. However,

the pixel-based metrics might lead to substantial loss when

little perturbation happened. The hybrid VAE and GAN was

then improved by replacing the element-wise reconstruction

error using the similarity metric learned from the discriminator.

Basically, the variational inference in VAE or hyrbid VAE and

GAN was performed by exploring the stochastic latent feature

z. The uncertainties of weight parameters in encoder, decoder

and discriminator were not considered. Regularization issue

was not sufficiently tackled. The latent code z is inferred by a

trained encoder using the variational distribution z ∼ qη(z|x)
rather than simply sampled from the standard Gaussian z ∼
N (0, I) in GAN. Here, η denotes the parameter of encoder.

Given the inferred samples z, the decoder is seen as a generator

which generates fake samples where the discriminator could

not tell the difference from true samples.

B. Bayesian GAN

Although the synthesized samples using GAN are convinc-

ing, it is still difficult to generate the diverse examples in which

the generator simply memorizes a few training examples to

fool the discriminator. As a result, some modes are missing in

generation process. To alleviate such a mode collapse problem

[15], Bayesian GAN [13] was proposed to fulfill a fully

probabilistic inference procedure where the weight uncertainty
was taken into account in construction of GAN for data

generation. The stochastic gradient Hamiltonian Monte Carlo

(HMC) algorithm was implemented as a sampling approach to

marginalize the posterior distributions over the weight param-

eters of generator θg and discriminator θd. Each mode in the

posterior over generator weights basically represent the weight

uncertainty from different generators. To infer the posterior

over θg and θd from training samples z = {zn}Ng

n=1 and

x = {xn}Nd
n=1, Bayesian GAN iteratively draws the samples

from the conditional posteriors p(θg|z, θd) and p(θd|z,x, θg)
by combining the likelihood function in Eq. (1) with the priors

over parameters of generator and discriminator p(θg|αg) and

p(θd|αd) with hyperparameters αg and αd with to yield{ Ng∏
n=1

D
(
G(zn, θg), θd

)}
p(θg|αg) (2)

{ Nd∏
n=1

D
(
xn, θd

) Ng∏
n=1

(
1−D

(
G(zn, θg), θd

))}
p(θd|αd) (3)

respectively. Practically, these posteriors are marginalized over

noise z using the Monte Carlo method in a form of

p(θg|θd) =
∫

p(θg|z, θd)p(z|θd)dz ≈ 1

Lz

Lz∑
l=1

p(θg|z(l), θd)
(4)

and p(θd|x, θg) ≈ 1
Lz

∑Lz

l=1 p(θd|z(l),x, θg) for sampling

procedure of θg and θd, respectively, where z(l) ∼ p(z) is

the white noise sample with totally Lz samples. Finally, there

are Lθ sets of parameters {θ(l)g , θ
(l)
d }Lθ

l=1 drawn for prediction

or generation of new data. The Bayesian GAN (denoted by

BGAN) is therefore constructed.

III. VARIATIONAL BAYESIAN GAN

BGAN basically compensates the weight uncertainty and

partially mitigates the dilemma of model collapse. But, the

sampling procedure is time-consuming and hard to converge.

Instead of using the stochastic gradient HMC algorithm for

posterior sampling, this paper presents the variational Bayesian

inference for the posterior over parameter weights in a new

generative model (called the variational GAN, VGAN).

A. Variational Bayesian inference

Similar to BGAN, there are two latent variables z and θ in

VGAN, Following the variational inference, the marginaliza-

tion of likelihood function over {z, θ} is first calculated and

then used to find the variational lower bound L(η, α) by

log p(x) = log

∫ ∫
p(x, z, θ) dzdθ

≥ Eq(θ|α)

[
N∑

n=1

{
Eqη(zn|xn)[log pθ(xn|zn)]

− KL
(
qη(zn|xn)‖p(zn)

)}]
− KL

(
q(θ|α)‖p(θ))

(5)

where two Kullback-Leibler (KL) divergence terms are derived

due to latent variables z and θ with the corresponding varia-

tional distributions qη(zn|xn) and q(θ|α) and hyperparameters

η and α, respectively. The optimization problem turns out to

first marginalize the likelihood function over model parameters

{θg, θd} and then maximize the lower bound L(η, α) with

respect to the variational parameters {η, α} for generator and

discriminator. It is noted that the first term in right hand side

of Eq. (5) reflects the reconstruction loss. KL terms act as the

regularization to match the variational distributions with the

Gaussian prior densities in p(zn) and p(θ) which are given

by N (0, I). Marginalizing over latent variables characterizes
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the randomness of latent structure in GAN which provides

the capability to outreach different modes in data distribution.

However, the log likelihood in GAN, i.e. the classification

likelihood in big brackets in Eqs. (2)-(3), is intractable. This

issue is tackled by replacing the likelihood pθ(xn|zn) in vari-

ational lower bound L(η, α) in Eq. (5) by using the synthesis

likelihood R(θ) = pθ(xn|zn)
p(xn)

≈ D(G(zn))
1−D(G(zn))

[16] because two

likelihoods are proportionally related. More specifically, the

generator G with parameter θg is trained according to

min
G

Lθ∑
l=1

{[
N∑

n=1

{
− Eqη(zn|xn)

[
log

D
(
G(zn, θ

(l)
g )

)
1−D

(
G(zn, θ

(l)
g )

)]

+ KL
(
qη(zn|xn)‖p(zn)

)}]
− log q(θ(l)g |αg) + log p(θ(l)g )

}
(6)

where the modified negative lower bound in a form of value

function, expressed by Vg(η, αg) � −L̃(η, αg), is minimized.

The expectation over variational distribution q(θg|αg) is here

approximated by Lθ Monte Carlo samples {θ(l)g }Lθ

l=1. At the

same time, the discriminator D with parameter θd is trained

by maximizing the resulting variational function Vd(αd) where

the weight uncertainty is compensated according to

max
D

Lθ∑
l=1

{
N∑

n=1

[
Exn∼p(xn)[logD

(
xn, θ

(l)
d

)
]

+ Ezn∼p(zn)[log(1−D
(
G(zn

)
, θ

(l)
d )]

]
+ log q(θ

(l)
d |αd)− log p(θ

(l)
d )

}
� max

D
Vd(αd).

(7)

A minimax optimization is fulfilled to implement a two-player

game for estimating G and D.

μg » q(μgj®g)

Generator

Discriminator
xreal

Encoderxreal

z » q´(zjx)

xfake

μd » q(μdj®d)

Fig. 1: Model structure for variational Bayesian GAN.

B. Implementation and algorithm

Figure 1 depicts the structure of the proposed variational

GAN which consists of an encoder, a generator and a dis-

criminator with the parameters or hyperparameters η, {θg, αg}
and {θd, αd}, respectively. The hybrid encoder and decoder

in VGAN plays a similar role to those in VAE [17], [18].

The discriminator with hyperparameter αd aims to distinguish

the real sample xreal from the fake sample xfake which is

generated by reconstruction due to the encoder with parameter

η and the decoder with hyperparameter αg . Using VGAN,

Lθ samples of parameters of generator and discriminator

{θ(l)g , θ
(l)
d } are marginalized in the learning objective by us-

ing the variational distributions {q(θg|αg), q(θd|αd)} which

are driven by fully-connected neural networks (NNs) using

parameters {αg, αd}. NN parameters {η, αg, αd} are jointly

estimated according to the learning procedure of VGAN as

formulated in Algorithm 1. Three NNs {η, αg, αd} are con-

figured with the outputs of Gaussian mean and variance param-

eters {μe, ρe, μg, ρg, μd, ρd} which are used to draw samples

{z(l), θ(l)g , θ
(l)
d } for implementation based on the stochastic

gradient variational Bayes estimator [11]. The discriminator

is updated k steps after the generator is updated once. The

reparameterization trick for Gaussian sampling is applied to

find stable samples θg and θd through the Gaussian parameters

{μ, ρ} via sampling the standard Gaussian variable ε, i.e.

θ = μ + log(1 + exp(ρ)) ◦ ε where ◦ means element-

wise product. This VGAN is realized by maximizing the

variational lower bound of log marginal likelihood over the

weights with twofold benefits. First, computational overhead

in training VGAN is alleviated because the posterior sampling

is avoided. Second, VGAN estimates a single set of parameters

{η, αg, αd} for data generation which significantly reduces

the memory requirement than those for BGAN {θ(l)g , θ
(l)
d }Lθ

l=1

where Lθ times of memory requirement is allocated.

Algorithm 1 Learning procedure for variational GAN

Require: η = {μe, ρe}, αg = {μg, ρg}, αd = {μd, ρd}, Lθ , k
for number of training iterations do

sample minibatch data from p(x)
for Lθ samples do

sample ε ∼ N (0, I)
calculate θg = μg + log(1 + exp(ρg)) ◦ ε

end for
update encoder η by minimizing Vg(η, αg)
update decoder αg by minimizing Vg(η, αg)
for k steps do

sample minibatch data from p(x)
sample ε ∼ N (0, I)
calculate θd = μd + log(1 + exp(ρd)) ◦ ε
update discriminator αd by maximizing Vd(αd)

end for
end for

IV. EXPERIMENTS

Different GAN models were evaluated by using the synthe-

sized samples over two learning tasks.

A. MNIST task

The Mixed National Institute of Standards and Technology

(MNIST) database consisted of handwritten digits from 0 to 9

and was widely used for evaluation of different learning tasks.

This database contained 60,000 training images and 10,000

test images. Each digit was centered in a gray-scale image

of size 28×28. This dataset was used to conduct evaluation

for regression as well as classification. In regression task, we

estimated the generative models based on VAE [11], GAN

[1], Bayesian GAN [13] and the proposed variational GAN for

comparison. There were three hidden layers in neural networks

for encoder, generator and discriminator and Lθ = 5. Using
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BGAN, 10 sets of generator weights were assumed and sam-

pled. Adam optimization was used. In classification task, we

compare the results of BGAN and VGAN based on the semi-

supervised learning where the model structure was arranged to

make label predictions [19], [20]. Both unlabeled and labeled

data were used. Discriminator was not only used to distinguish

fake data from real data but also classify the sample into one of

10 classes. The setting of semi-supervised learning provided

a practical approach to desirable classification performance

using GANs with the limited amount of labeled data.

(a) (b) (c)

(d) (e) (f)

Fig. 2: MNIST digits from random noise by using (a) VAE, (b)

GAN, (c) variational GAN, and (d)-(f) Bayesian GAN using

three different samples of generator weights θ
(l)
g .
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Fig. 3: Classification accuracy of test data versus learning

epochs using Bayesian GAN and variational GAN.

Figure 2 displays the random samples of MNIST digits by

using VAE, GAN, BGAN and VGAN. A regression task with

unsupervised learning is performed. The samples generated

by VAE look blurred while those generated by GAN look

precisely. However, the mode collapse happens because the

mode of digit ‘1’ is frequently drawn. But, several other

digits or modes are rarely observed. Using Bayesian GAN, we

show the generated images based on three selected parameter

samples (totally 10 parameter sets of θ
(l)
g are required). It

is obvious that BGAN does obtain meaningful samples of

generator weights so that three sets of generated samples

sufficiently reflect three different modes. Nevertheless, the

proposed variational GAN (in Figure 2(c)) produces images

with good quality and diversity based on a single parameter
αg . θg has been marginalized. Basically, different modes in

BGAN produce the meaningful samples with similar classes.

However, BGAN requires multiple parameter sets for Bayesian

integration. Figure 3 illustrates the classification accuracy of

test data versus the number of learning epochs by using

BGAN and VGAN. The more learning epochs the models

are trained by BGAN and VGAN, the higher the classification

performance is achieved. Obviously, the convergence of learn-

ing procedure using VGAN is faster than that using BGAN.

Accuracies using VGAN are higher than those using BGAN.

BGAN VGAN
generator 35748 14392
discriminator 2764 213
total 38512 14605

TABLE I: Comparison of number of parameters in GANs.

B. CelebA task

CelebA [21] is known as a large-scale task for face attributes

with more than 200K celebrity images, each with 40 attributes.

The color images in this dataset covered large pose variations

and background clutters. CelebA had a large variety of images

with rich annotations where there were 10,177 identities

and 202,599 face images from 5 landmark locations with

40 binary attributes per image. We ran the experiment on

image generation by using the aligned images which were

cropped by using the similarity transformation according to

two eye locations. In practice, we resized each image to a

fixed dimension of 64x64 (x ∈ R
64x64x3) and trained without

attributes. In such an unsupervised learning, the convolutional

layers were consistently used in GAN (also known as the deep

convolutional GAN [22]), BGAN and VGAN. The encoder

and decoder used the kernel size of 5 and 4, respectively. There

were four convolutional layers and one fully-collected layer in

the encoder with dimensions 64, 128, 256, 512, 64 and one

fully-connected and four convolutional layers in the decoder

with dimensions 512, 256, 128, 64, 32, respectively. Softplus

activation was used with batch normalization for both encoder

and decoder. The discriminator was configured as three fully-

connected layers with the same dimension 512. Latent code

had dimension z ∈ R
64. ReLU was used. Table I compares

the size of parameters in the generator and discriminator

using BGAN and VGAN. Both GANs adopt the Bayesian

convolutional layers and fully-connected layers. BGAN uses

much more parameters than VGAN.

Figure 4 displays a number of samples generated by BGAN.

The synthesized images look clearly as the human faces with

reasonable shape in face content, hair and background. But,

the eyes, noses, mouses, face skins, hairs are partially broken,

twisted or non-smoothed. By using VGAN, the synthesized

images are improved. To quantify the quality of the generated

face images, we sample 1K and 10K of synthesized Celeb
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(a)
(b)

Fig. 4: CelebA faces by using (a) BGAN and (b) VGAN.

faces and measure the Fréchet inception distance (FID) [23]

which compares the statistics or calculates the similarity

between the generated samples to real images. FID was shown

to characterize the disturbance of generated images [24]. The

Fréchet distance between two multivariate Gaussians of real

samples and generated samples with means and covarances

{μr,Σr} and {μg,Σg}, respectively, is calculated by

FID = ‖μr − μg‖2 + Tr(Σr +Σg − 2(ΣrΣg)
1/2). (8)

This FID is measured from the Gaussians of real and gener-

ated samples which are calculated from the 2048-dimensional

activations in the last layer of generator. The smaller the FID,

the better the generated images are obtained. Table II reports

the FID values by using different GANs. 10K samples obtains

smaller FID than 1K samples. The proposed VGAN achieves

the lowest FID when compared with GAN and BGAN.

GAN BGAN VGAN
1K 107.2 70.4 22.5
10K 95.8 60.7 10.3

TABLE II: Comparison of FIDs by using different GANs.

V. CONCLUSION

This paper explored the Bayesian learning for generative

adversarial networks which tackled the issue of mode collapse

by regularizing the trained models where the weight uncer-

tainty was compensated. The learning objective was derived

to implement the variational generative adversarial network

via a minimax optimization for estimation of variational pa-

rameters for encoder, generator and discriminator where the

prior distributions were merged. Mode collapse was mitigated.

Theoretical illustration and comparison with other generative

models were addressed. The variational Bayesian variant of

GAN was proposed with desirable performance in a regression

task for unsupervised learning as well as a classification task

for semi-supervised learning as shown in the experiments. Two

learning tasks on real-world data with different sizes were

examined over different generative models to show the merit

of the proposed method in terms of visualization and Fréchet

inception distance in the learning procedure. Future works will

be extended to implement variational GAN for generation of

other types of technical data.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, 2014, pp. 2672–
2680.
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