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Abstract—Multiscale Permutation Entropy (MPE), an exten-
sion of Permutation Entropy (PE), was proposed to better capture
the information content in long range trends. This technique has
been extensively used in biomedical applications for diagnosis
purposes. Although PE theory is well established and explored,
there is still a lack of theoretical development for MPE. In the
present paper, we expand the theory by formulating an explicit
MPE model of first order Autoregressive (AR) and Moving
Average (MA) processes, which are well known and used in signal
modeling. We first build the autocorrelation function of coarse-
grained AR and MA models, which are a prerequisite for MPE
calculation. Next, we use the resulting autocorrelation functions
to establish the theoretical value of MPE as a function of time
scale and AR or MA parameters. The theoretical result is tested
against MPE measurements from simulations. We found the MPE
of the 1° order AR model to converge to the maximum entropy
with increasing time scale. Nonetheless, the convergence is not
always monotonic. For AR parameter values greater than the
Golden Ratio, the MPE curve presents a local minimum at a time
scale different than one, which implies a more regular structure
than the one measured with PE. The MPE of the 1° order MA
model converges rapidly to the maximum entropy with increasing
time scales, regardless of the MA parameter value, which is in
accordance to our expectations.

Index terms— Autoregressive model, Moving Average
model, Multiscale Permutation Entropy, Coarse-graining pro-
cedure.

I. INTRODUCTION

Since its introduction, Information Entropy [1] has been
used in a wide range of fields to study the complexity of data
series. Different versions of Entropy measurements have been
successfully used in medical fields to analyze physiological
signals for diagnostic purposes. Goldberger, in particular, [2]
proposed that pathologies can be distinguished by measuring
statistical complexity.
Different approaches have been used in this field. Approximate
Entropy [3], Sample Entropy [4] and Fuzzy Entropy [5] have
been used to compare the similarity between different sections
of a signal. A more symbolic approach is that of the Permuta-
tion Entropy (PE) [6], where the ordinal patterns of the signal
are analyzed. This method has the advantage of being fast and
easy to compute, and of being resistant to outliers. A more
recent consideration is the analysis of different time scales
using Multiscale Entropy [7], and Multiscale Permutation
Entropy (MPE) [8], to capture the hidden similarities that
could arise at lower frequencies, often lost in the analysis of

their traditional counterparts.
Previous work has been done in the characterization of PE
[9] [10]. Although several variants and improvements to MPE
exist [11] [12] [13], there is not an comprehensive theory
regarding the characterization of MPE. In our previous paper
[14], we have already studied the expected value of MPE
applied on fractional Gaussian noise, where we found a bias
which is only dependent on the time scale. In the present paper,
we will further expand the theory regarding the characteriza-
tion of MPE by applying it to the 1° order Autoregressive
(AR) and the 1° order Moving Average (MA) processes.
These models are widely used in biomedical signal modeling,
and offer an excellent starting point to better understand the
MPE with respect to parameter variation. Our contribution
is two-fold: we will develop an explicit formulation for the
autocorrelation function for the coarse-grained signals of 1°
order AR and MA models, which is a necessary step for the
MPE calculation. We will also provide and explicit formulation
of MPE as a function of time scale and AR or MA parameters.
The article is organized as follows, Section II introduces the
theoretical background needed for PE, MPE, AR and MA
models. Section III develops the mathematical expressions
for coarse-grained 1° order AR and MA models and their
respective MPE’s. Finally, in Section IV we will apply MPE
computation on AR and MA simulations, to provide a bench-
mark to compare the predictions of our models from Section
III.

II. THEORETHICAL BACKGROUND

In this section we are going to lay the necessary background
and tools. In subsection II-A we will establish the formulation
of PE. In subsesection II-B we will explain the coarse-graining
procedure to calculate the MPE. Finally, in subsection II-C,
we will explain briefly the 1° order AR and MA models,
necessary for later development.

A. Permutation Entropy

PE [6] measures the level of information contained in the or-
dinal patterns of the signal. For a fixed dimension d, an ordinal
pattern arises in any d consecutive data points. Being N the
signal length, n the time index, and dimension d = 2, there
are two possible patterns in the signal x1, . . . , xn, . . . , xN :
xn < xn+1, and xn > xn+1. For dimension d = 3, there
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exists six possible ordinal patterns. In general, for each chosen
dimension d, there are d factorial (d!) possible patterns. By
counting the number of instances of each pattern, we can
construct an estimator of probabilities for each event in the
sample space. This estimator is given by:

p̂i =
]{n|n ≤ N − (d− 1), (xn+1, . . . , xn+d) type i}

N − (d− 1)
(1)

where p̂i is the estimated probability of finding the ordinal
pattern i, and i = [1, . . . , d!]. We compute the estimated
pattern probability by counting the number patterns i, divided
by the total pattern count. Typically, a delay term is included
in (1) to deal with oversampled signals. For the remainder of
this paper, we will assume the signal is properly sampled, and
the patterns are directly obtained from consecutive data points.
With these probability estimators established, we can calculate
the PE, denoted by Ĥ, using information Entropy definition
[1]:

Ĥ =
−1

ln(d!)

d!∑
i=1

p̂i ln p̂i (2)

for all possible d! patterns. The entropy is normalized, so that
Ĥmax = 1.
PE has the advantages of being simple and fast to compute,
and invariant to nonlinear monotonous transformations [10].
Since the method only works with ordinal values, there are no
assumptions regarding the probability distribution of the raw
data, which makes it robust to a wide variety of applications.
The limitations of the method involve the signal length, where
the condition N � d! must be satisfied to ensure a good
probability estimation [10].

B. Coarse-Grained procedure and Multiscale Permutation En-
tropy

To obtain the MPE, we must first apply a coarse-graining
procedure to the original signal to analyze [8]. We divide
the signal into adjacent non-overlapping segments of size m,
which is a parameter that represents the time scale of interest.
We then compute the average of all the data points in each
segment, as shown in (3). The new coarse-grained signal of
size N/m is composed of the averages of each segment.

x
(m)
k =

1

m

km∑
j=m(k−1)+1

xj (3)

The MPE technique consists on applying the PE (2) on the
resulting coarse-graining signals (3). There is a practical limit
to the upper value of the time scale paramenter m, where the
condition N/m� d! is eventually not satisfied.

C. AR and MA Models

The Autoregressive (AR) and Moving-Average (MA) mod-
els are extensively used in the characterization and simulation
of time series, particularty in the context of biomedical signals.
These models are thus well suited for testing signal processing
tools. ARMA models combine the two stochastic processes
(AR and MA) in a single formulation. The Autoregressive part

weights the influence of a data point in terms of p previous
terms, plus a new error element. The Moving-Average, on the
other hand, consist of a linear combination of the q previous
stochastic error terms. More formally, the ARMA(p,q) model
can be written as,

xn = c+ εn +

p∑
i=1

φixn−i +

q∑
j=1

θjεn−j (4)

The ε terms are assumed to be normal, independent, identi-
cally distributed (iid) random variables with zero-mean, and
variance σ2. The parameter p is the number of autoregressive
terms φi, and q is the number of moving average terms θi.
For the simplest case, the 1° degree MA (p = 0 and q = 1)
is explicitly written as:

xn = c+ εn + θεn−1 (5)

where the expected value and variance are

E[Xn] = c (6)

var(Xn) = σ2(1 + θ2). (7)

The MA normalized autocorrelation function is given by

ρ(λ) =


1, if λ = 0

θ/(1 + θ2), if |λ| = 1

0, otherwise,
(8)

where λ represents the distance between data points xn and
xn±λ. Similarly, the 1° degree AR (p = 1 and q = 0), can be
written as,

xn = c+ εn + φxn−1 (9)

where

E[xn] = c/(1− φ) (10)

var(xn) = σ2/(1− φ2) (11)

ρ(λ) = φ|λ|. (12)

As we will study in section III-C, the MPE of AR and MA
signals can be expressed as a function of their autocorrelation
function. Therefore, it is necessary to first obtain the autocor-
relation function of the coarse-grained AR and MA signals,
based on (8) and (12).

III. COARSE-GRAINED ARMA MODEL AND MPE
In this section we will explicitly formulate the autocor-

relation functions of 1° order MA and AR models, which
are necessary to obtain the MPE of these models. As a first
approach to the problem, we will limit our analysis to first
order models.

A. Coarse-Grained First Order MA

By applying the coarse grained procedure expression (3)
into the 1° order MA process definition (5), we get,

x
(m)
k,MA = c+

θ

m
εm(k−1) +

1

m
εmk +

1 + θ

m

mk−1∑
j=m(k−1)+1

εj ,

(13)
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k being the index variable of the new coarse grained signal,
and m the scale (hence, the index mk refers to the term m
times k from the original signal). From this expression, we
can derive the autocovariance function,

Cov
(
x
(m)
k,MA, x

(m)
k+λ,MA

)
(14)

=


σ2

m

(
1 + θ2 + 2

(
m−1
m

)
θ
)
, if λ = 0

θ
mσ

2, if |λ| = 1

0, otherwise.

(15)

(16)

We also obtain the autocorrelation function from (13),

ρ
(m)
MA(λ) =


1, if λ = 0

mθ
1+θ2+2(m−1

m )θ
, if |λ| = 1

0, otherwise.

(17)

B. Coarse-Grained First Order AR

Similarly, if we apply the coarse grained procedure expres-
sion in (3) into the 1° order AR process (9), we get,

x
(m)
k,AR =

φ

m

(1− φm
1− φ

)
xm(k−1),AR +

m∑
j=1

(1− φj
1− φ

)
εmk+1−j

(18)

The variance of (18) is

var(x
(m)
k,AR) =

σ2

m2(1− φ2)

[
m

(
1 + φ

1− φ

)

− 2φ

1− φ

(
1− φm

1− φ

)]
.

(19)

The autocovariance function of (18) is given by

cov
(
x
(m)
k,AR, x

(m)
k+λ,AR

)
=

φmλ+2

m2

(1− φm
1− φ

)2
var(xm(k−1),AR)

+
σ2

m2
φm(λ+1) 1− φm

1− φ

m∑
j=1

1− φj

1− φ
(20)

and the autocorrelation is,

ρ
(m)
AR (λ) = φm(λ−1)+1

[
(1− φm)2

m(1− φ2)− 2φ(1− φm)

]
(21)

for |λ| > 0, and ρ(m)
AR (λ = 0) = 1.

It is important to point out that the autocovariance (20) is
not equal to the variance (19) for λ = 0. The variance
of each coarse-grained segment (3) consists of the sum of
all the individual variances of each element, plus the sum
of the covariance of every possible pair of elements within
the segment. To obtain the covariance of (18), we compare
the elements of two different segments, with no elements in
common. This means no variance terms are present, and the
calculation of (20) consists only on the sum of the covariance
of each possible matching pair of elements between segments.

Since no variance term appears, the resulting (20) is not valid
when λ = 0.
Both correlations functions (17) and (21) are necessary for the
proper theoretical calculation of their respective MPE’s in the
next subsection.

C. MPE of First Order MA and AR

For a Gaussian process with stationary increments [9], the
MPE is a function only of the autocorrelation of the said
process. Furthermore, by exploiting the symmetries of this
kind of signals, we only need to calculate the probability
of one pattern [9]. For dimension d = 2, this yields to the
conclusion that both possible patterns have equal probabilities
of appearing (1/2), and the resulting PE is always maximum.
For dimension d = 3 we have the relation

p1 =
1

π
arcsin

(
1

2

√
1− ρ(2)
1− ρ(1)

)
. (22)

where π = 3.1415 and pi is the pattern probability defined
in (2). This is the probability of obtaining the first pattern (
x
(m)
k < x

(m)
k+1 < xmk+2 ) of a coarse-grained signal with these

conditions. By exploiting the symmetries explained in [9], we
have

p1 = p6

p2 = p3 = p4 = p5 =
1− p1

4
.

(23)

By applying the autocorrelation function (17) of a coarse-
grained 1° order MA process into the pattern probability
calculation for p1 (22), we get,

pMA
1 =

1

π
arcsin

(
1

2

√
1 + θ2 + 2(m−1m )θ

1 + θ2 − (m
2−2m+2
m )θ

)
(24)

Similarly, if we introduce the autocorrelation of the coarse-
grained 1° order AR process (21), we get,

pAR1 =

1

π
arcsin

(
1

2

√
m(1− φ2)− φ(2− φm)(1− φ2m)

m(1− φ2)− φ(1− φm)(3− φm)

)
(25)

Both expressions (24) and (25) are now dependent on the time
scale m and the model parameters θ or φ, depending on the
model. Consequently, by using these probabilities directly into
the original Entropy calculation (2), the MPE for d = 3 can
be described as follows,

H =
−1

ln(d!)

(
2p1 ln

(
p1
)
+
(
1− p1

)
ln
(1− p1

4

))
(26)

These are the theoretical values for the MPE of coarse-grained
MA (24) and AR (25) processes. Since the autocorrelation
function depends on the scale m, so does the MPE. We can
now compare, in the next section, the models’ MPE based on
parameters, with 1° order MA and AR simulations.
We limited our analysis for dimension d = 3. For dimension
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Fig. 1. Theoretical results (dotted lines) vs. average results for p1 and MPE simulated signals for 1° order MA (top) and 1° order AR (bottom). Each
parameter value has 1500 simulated signals of N = 1000 data points each. The bottom dotted line in (a) and (c) represent theoretical p1 of uncorrelated
white noise, which corresponds to maximum entropy of one.

d = 4, some of the resulting pattern probabilities are complex,
so the interpretation of the results become difficult. For dimen-
sion d ≥ 5, the pattern probabilities have no closed expression
[9].

IV. RESULTS

To test the theoretical values of the MPE of the 1° order
AR and MA processes (26), we performed simulations
using increasing values of the model parameter from zero
to one to ensure stability. For each parameter test value, we
performed 1500 simulations to generate signals of length
N = 1000 each. The resulting processes were subject to the
coarse-graining procedure (3) for time scales m = 1, . . . , 15.
Finally, we obtained the MPE of these coarse-grained signals
using (2). To avoid the finite-length bias [14], we increased
the N at each time scale, to ensure that the coarse-grained
signal length remains constant N/m = 1000. Albeit this
cannot be done on real signals, this assumption allows us to
observe the MPE of the models without any artifact effects
due to the MPE algorithm itself, or any of it’s variants.
Fig. 1a shows the probability p1 (24) versus time scale in a

MA process, for different values of θ. Fig. 1b shows of the
corresponding MPE for a MA process (26). The dotted lines
represents the theoretical results from the (24) while the solid
lines are the result of the simulations explained above.
The differences in probabilities and MPE are heavily
dependent on the value of θ in the first time scale. When
m increases, the differences become less pronounced,
asymptotically approaching to the maximum entropy value,
characteristic of an uncorrelated noise. This agrees with our
expectations, as the average values of coarse-graining blocks
of increasing length become less correlated between them.
Similarly for the 1° order AR process, Fig. 1c presents p1
(25) respect to time scale, for different values of φ, and Fig.
1d shows the respective MPE (26). The values in dotted lines
come from the theoretical calculations, where the solid lines
come directly from simulations.
The MPE curve for AR also presents an asymptotical
approximation to the maximum entropy, which implies that
for increasing values of m, the process becomes similar to
uncorrelated noise. Nonetheless, the convergence is slower
than the MA. This is also in accordance to our expectations,
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as the AR model presents longer range correlations between
data points.
An interesting MPE curve arises for high values of φ,
where the curve does not present a monotonical increase.
We can observe a minimum MPE for a scale different than
m = 1. This is an interesting and unexpected result, as
it is not evident from the structure of (25). To obtain the
critical φ where this behavior begins to manifest, we take the
argument of the arcsin function (22), and choose a φ such
that the first two scales have the same probability and MPE
(pAR1 |m=1 = pAR1 |m=2)

1− ρ(1)AR(2)
1− ρ(1)AR(1)

=
1− ρ(2)AR(2)
1− ρ(2)AR(1)

φ(φ− 1)(φ2 + φ− 1) = 0

φ = −1/2 +
√
5/2 ≈ 0.618,

(27)

in which the only root in the range of stability for φ cor-
responds to the inverse of the Golden Ratio. This represents
the limit point for φ. Below this value, the MPE increases
monotonically, as expected. On the other hand, if φ > 0.618
we find a minimum value of MPE at m > 1. This suggests
that highly correlated AR signals have more regular structures
at higher scales, a fact that is not obvious from (18).
We can observe that even a relatively simple model like AR
can present less information content at time scales greater than
one, and thus, have more regularity and structure. This implies
MPE has the potential to extract long-range regularities for
real biomedical signals, even when they can be modelled and
approximated to simple, well known time series models.
Lastly, we must address the comparison between the pre-
dicted MPE values and the simulations. The results closely
resemble the predictions in both models, which supports the
propositions made in section III-C. It is worth noting that the
simulated MPE results, albeit close, are consistently below
the predicted values. This can be explained by the small
variations in the probability p1 (23). When the distribution
of probabilities does not match the precise symmetries used
in section III-C. These variations are translated as a loss in
MPE, as we measure some patterns as sightly more probable
than others, thus reducing the overall MPE.

V. CONCLUSION

In the present paper, we have built an explicit formulation
of the MPE for the 1° order AR and MA processes. This
was achieved by means of calculating the autocorrelation
function of coarse-grained signals. This yields to an equation
that depends both on the process parameters, and the time
scale. The theoretical MPE predictions were found to closely
resemble the simulations, which add evidence to its validity.
The most outstanding discovery was the non-monotonous
increase in MPE curve for high values of the 1° order AR
parameter. For an AR parameter value greater than the inverse
of the Golden Ratio, the MPE curve presents a minimum
at higher scales than the first one, which suggest a hidden,
complex relation in the signal trends. This proves that MPE is a

powerful tool to detect long-term correlations and information
content. Both MA and AR models converge asymptotically
to the maximum entropy for high time scales, which is
in accordance to our expectations. The MPE of simulated
signals, albeit close, present a sightly lower value than the
predictions, mainly because they present small variations from
the symmetries in the patterns. This is to be expected from
simulated random processes.
Since AR and MA models are heavily used in the modeling
of biomedical signals, they are well suited as a starting point
for testing different signal processing tools and methods. In
the case of MPE, it is necessary to know what to expect from
these models, to better understand and interpret the results
when applying this method to real signals.

ACKNOWLEDGMENT

The authors would like to thank the Science and Technology
Council of Mexico (CONACyT) for providing the funding for
this research.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 5, no. 1, pp.
3–55, 2001.

[2] A. L. Goldberger, C.-K. Peng, and L. A. Lipsitz, “What is physiologic
complexity and how does it change with aging and disease?”
Neurobiology of Aging, vol. 23, no. 1, pp. 23–26, 2002.

[3] S. M. Pincus, “Approximate entropy as a measure of system
complexity.” Proceedings of the National Academy of Sciences, vol. 88,
no. 6, pp. 2297–2301, 1991.

[4] J. S. Richman and J. R. Moorman, “Physiological time-series analysis
using approximate entropy and sample entropy,” American Journal
of Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, pp.
H2039–H2049, 2000.

[5] C. Liu, K. Li, L. Zhao, F. Liu, D. Zheng, C. Liu, and S. Liu, “Analysis
of heart rate variability using fuzzy measure entropy,” Computers in
Biology and Medicine, vol. 43, no. 2, pp. 100–108, 2013.

[6] C. Bandt and B. Pompe, “Permutation entropy: A natural complexity
measure for time series,” Physical Review Letters, vol. 88, no. 17, p.
174102, 2002.

[7] M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy
analysis of complex physiologic time series,” Physical Review Letters,
vol. 89, no. 6, p. 068102, 2002.

[8] W. Aziz and M. Arif, “Multiscale permutation entropy of physiological
time series,” in 2005 Pakistan Section Multitopic Conference, 2005, pp.
1–6.

[9] C. Bandt and B. Shiha. Order patterns in time series. journal of time
series analysis. vol 28, no. 5, pp. 646-665, 2007.

[10] L. Zunino, D. G. Prez, M. T. Martn, M. Garavaglia, A. Plastino, and
O. A. Rosso, “Permutation entropy of fractional brownian motion and
fractional gaussian noise,” Physics Letters A, vol. 372, no. 27, pp.
4768–4774, 2008.

[11] H. Azami and J. Escudero. Improved multiscale permutation entropy
for biomedical signal analysis: Interpretation and application to
electroencephalogram recordings. Biomedical Signal Processing and
Control Vol. 23 P28-41. 2016.

[12] A. Humeau-Heurtier, C.-W. Wu, and S.-D. Wu. Refined composite
multiscale permutation entropy to overcome multiscale permutation
entropy length dependence - IEEE signal processing letters. vol. 22 ,
issue: 12 , dec. 2015.

[13] J. Zheng, H. Pan, S. Yang, and J. Cheng, “Generalized composite
multiscale permutation entropy and laplacian score based rolling
bearing fault diagnosis,” Mechanical Systems and Signal Processing,
vol. 99, pp. 229–243, 2018.
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