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Abstract—Sparse representations of model parameters have
been widely studied. In the adaptive filtering literature, most
studies address the cases where the sparsity is directly observed,
therefore, there is a growing interest in developing strategies
to exploit hidden sparsity. Recently, the feature LMS (F-LMS)
algorithm was proposed to expose the sparsity of models with
low- and high-frequency contents. In this paper, the F-LMS
algorithm is extended to expose hidden sparsity related to models
with bandpass spectrum, including the cases of narrowband
and broader passband sources. Some simulation results show
that the proposed approaches lead to F-LMS algorithms with
fast convergence, low misadjustment after convergence, and low
computational cost.

Index Terms—adaptive filtering, LMS algorithm, feature ma-
trix, bandpass system, narrowband system

I. INTRODUCTION

In classical adaptive filtering area the least-mean-square

(LMS) algorithm has been by far the most widely used due

to its simplicity and known properties [1], [2], [3]. Moreover,

in the last decades, many variants of the LMS algorithm have

been proposed [3]–[7]. The original LMS and many alternative

algorithms do not exploit any sparsity inherent to problem at

hand.

The importance of sparse representations has been recog-

nized by the scientific community in the last two decades [8],

[9]. The main benefit is the parsimonious use of parameters

composing mathematical models of signal sources, in other

words, one seeks the sparsest representation for a given

signal. Sparsity is usually revealed by the number of zero

entries in the set of parameters, see for example [10]–[15].

However, in many practical cases, the potential sparsity is

not directly observed in the set of parameters. The feature

LMS (F-LMS) algorithm has been proposed to exploit sparsity

in models representing sources with low- or high-frequency

spectrum [16], [17].

In this paper, the concept of feature adaptive filtering is ex-

tended to system models with bandpass spectrum. The simplest
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feature matrix reveals the sparsity of very narrowband sources,

whereas a generalization of this approach can be applied to

broader passband sources. Simulations demonstrate that the

proposed F-LMS algorithms of bandpass sources lead to faster

convergence and lower misadjustment after convergence, while

reducing the computational cost. The ideas presented here can

also be applied to more sophisticated algorithms exploiting

sparsity such as those in [18] and [19].

This paper is organized as follows. Section II revisits the

F-LMS family of algorithms. In Section III, the derivation of

the feature matrix for narrow bandpass spectrum is presented.

The following section introduces a strategy to generate feature

matrices to exploit sparsity on a broader class of bandpass

systems. Section V analyzes the convergence behavior of

the coefficient vector of the proposed algorithm. Section VI

presents some simulations to confirm the improved perfor-

mance brought about by the proposed F-LMS algorithms. The

conclusions are given in Section VII.

Notation: Scalars are represented by lower-case letters. Vec-

tors (matrices) are denoted by lowercase (uppercase) boldface

letters. For a given iteration k, the weight vector and the

input vector are denoted by w(k),x(k) ∈ R
N+1, respectively,

where N is the adaptive filter order. The error signal at the k-

th iteration is defined as e(k) � d(k) − wT (k)x(k), where

d(k) ∈ R is the desired signal. The l1-norm of a vector

w ∈ R
N+1 is given by ‖w‖1 =

∑N
i=0 |wi|.

II. THE FEATURE LMS ALGORITHMS

The feature LMS (F-LMS) algorithm had been previously

proposed in [16] with the scope of exploiting some features

of the unknown parameters. The F-LMS algorithm minimizes

the objective function below

ξF-LMS(k) =
1

2
|e(k)|2︸ ︷︷ ︸

standard LMS term

+αP (F(k)w(k))︸ ︷︷ ︸
feature-inducing term

, (1)

where α ∈ R+ is the weight given to the sparsity-promoting
penalty function P , which maps a vector to the nonnegative

reals R+. Moreover, F(k) is the so-called feature matrix,

which exposes the hidden sparsity. Indeed, the outcome of
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multiplying w(k) by F(k) should be a sparse vector, i.e., most

entries of the vector F(k)w(k) must be close or equal to zero.

By utilizing the stochastic gradient descent method for

the objective function (1), the recursion rule of the F-LMS

algorithm can be characterized as [16]

w(k + 1) = w(k) + μe(k)x(k)− μαp(k), (2)

where μ is the step-size and should be adopted small enough

to guarantee the convergence. Furthermore, p(k) ∈ R
N+1 is

the gradient of function P (F(k)w(k)) with respect to w(k).
In general, F(k) can be any time-varying matrix so that

F(k)w(k) generates a sparse vector, and it is selected based

on some a priori information about the unknown system w∗.

In [16], the authors have introduced the F-LMS algorithm

to exploit hidden sparsity in systems containing lowpass and

highpass frequency spectrum. However, the F-LMS algorithm

can be used to expose sparsity in more general systems.

The family of F-LMS algorithms, depending on the adopted

F(k), can exploit different features in unknown systems. In

the next section, we define a particular feature matrix F(k)
for the F-LMS algorithm so that it can exploit the hidden

sparsity in filters with narrow passband systems to improve

the convergence rate and the mean-squared error (MSE) of

the learning process.

III. THE F-LMS ALGORITHM FOR NARROW PASSBAND

SYSTEMS

In this section, we propose the F-LMS algorithm for band-

pass systems with narrow passband. Consider an unknown

system w∗ with an extremely narrow passband spectrum

around the frequency ωc ∈ [0, π) and small energy at all other

frequencies. Our goal is to design the feature matrix F(k) such

that the multiplication of F(k) and the impulse response of

the unknown system results in a sparse vector.

To this end, we define the transfer function F (z) as

F (z) �(z − e−jωc)(z − ejωc) = z2 − 2 cos(ωc)z + 1

=[1 − 2 cos(ωc) 1][z
2 z 1]T , (3)

which has zeros at e±jωc . Then we can introduce W s
∗ (z) as

W s
∗ (z) � F (z)W∗(z), (4)

where W∗(z) is the z transform of the unknown system w∗.

Since the transfer function F (z) rejects the frequency ωc and

W∗(z) attenuates all other frequencies different from ωc, the

impulse response of W s
∗ (z) will be a sparse vector. Therefore,

inspired by the transfer function F (z), the feature matrix can

be adopted as the time-invariant matrix F ∈ R
(N−1)×(N+1),

F �

⎡
⎢⎢⎢⎢⎢⎣

1 pc 1 0 0 · · · 0
0 1 pc 1 0 · · · 0
... · · · . . .

. . .
. . . · · · ...

0 · · · 0 1 pc 1 0
0 · · · · · · 0 1 pc 1

⎤
⎥⎥⎥⎥⎥⎦
, (5)

where pc = −2 cos(ωc).

Considering the system w∗, the vector Fw∗ would be

a sparse vector. Thus, by utilizing F as the feature matrix

in the objective function (1), we can exploit this sparsity

with the help of the sparsity-promoting penalty function P .

Some candidates for P are the l1-norm [20]–[23], the l0-

norm [17], [24], [25], the discard function [26], [27], etc. In

this work, we consider the l1-norm as the sparsity-promoting

penalty function due to its simplicity. Hence, the optimization

criterion (1) reduces to

ξ(k) =
1

2
|e(k)|2 + α‖Fw(k)‖1. (6)

After using the stochastic gradient descent approach, the

update equation of the F-LMS algorithm for bandpass systems

with narrow passband is given by (2) in which p(k) is replaced

by pc(k) defined as

pci(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sgn(w0(k) + pcw1(k) + w2(k))
if i = 0,

pcsgn(w0(k) + pcw1(k) + w2(k))
+sgn(w1(k) + pcw2(k) + w3(k))

if i = 1,
sgn(wi−2(k) + pcwi−1(k) + wi(k))
+pcsgn(wi−1(k) + pcwi(k) + wi+1(k))
+sgn(wi(k) + pcwi+1(k) + wi+2(k))

if i = 2, · · · , N − 2,
sgn(wN−3(k) + pcwN−2(k) + wN−1(k))
+pcsgn(wN−2(k) + pcwN−1(k) + wN (k))

if i = N − 1,
sgn(wN−2(k) + pcwN−1(k) + wN (k))

if i = N,
(7)

where sgn(·) stands for the sign function.

IV. THE F-LMS ALGORITHM FOR BANDPASS SYSTEMS

In the previous section, we proposed the F-LMS algorithm

for bandpass systems with narrow passband. In this section, we

extend the idea for general bandpass systems. For a bandpass

system, w∗, with lower and upper cut-off frequencies at ωl and

ωu, respectively, the main idea is to apply the transfer function

F (z) to W∗(z) so that the impulse response of F (z)W∗(z)
becomes a sparse vector. In order to construct F (z), we can

cascade different transfer functions F1(z), · · · , Fm(z), where

Ft(z) has zeros at e±jωt for t = 1, · · · ,m and ωl < ω1 <
· · · < ωm < ωu. Therefore, F (z) can be given by

F (z) � F1(z) · · ·Fm(z)

=(z − e−jω1)(z − ejω1) · · · (z − e−jωm)(z − ejωm)

=
(
z2 − 2 cos(ω1)z + 1

)
· · ·

(
z2 − 2 cos(ωm)z + 1

)
=[1 ρ1 · · · ρm−1 ρm ρm−1 · · · ρ1 1][z2m z2m−1 · · · z 1]T ,

(8)

where the last line is the vectorial representation of its previous

line.

The transfer function F (z) has zeros at e±jωt , thus it

rejects the frequencies ωt in the passband region [ωl, ωu],
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for t = 1, · · · ,m. Therefore, based on the transfer function

F (z), we can introduce the time-invariant feature matrix

F as a toeplitz matrix of dimension (N + 1 − 2m) ×
(N + 1) whose first row and first column are given by

[1 ρ1 · · · ρm−1 ρm ρm−1 · · · ρ1 1 0 · · · 0] and [1 0 · · · 0]T ,

respectively. Since the impulse response of F (z)W∗(z) can be

represented by a sparse vector, the application of the feature

matrix F to the bandpass system model w∗ would generate

a sparse vector. As a result, this sparsity can be exploited by

the l1-norm, as in the previous section. Finally, the recursion

rule of the F-LMS algorithm for bandpass systems is given

by (2), where p(k) is the gradient of ‖Fw(k)‖1 with respect

to w(k).
Remark 1: For a bandpass system, w∗, with the passband

range of frequencies [ωl, ωu] ⊂ [0, π), empirically, we require

[ |ωu−ωl|
0.07π ]+1 complex conjugate zeros for the transfer function

F (z) enabling that the feature matrix F reveals the hidden

sparsity of w∗, where [x] denotes the integer part of x. In

other words, for each subinterval of length 0.07π of [ωl, ωu],
we need to consider a complex conjugate zero for the transfer

function F (z).

V. CONVERGENCE BEHAVIOR OF THE COEFFICIENT

VECTOR

Assume that w̃(k) � w(k) − w∗ denotes the difference

between the adaptive filter coefficients and the optimum

solution w∗. Also, we know that e(k) = d(k) − y(k) =
wT

∗ x(k)+n(k)−wT (k)x(k) thus, using the recursion rule (2),

we get

w̃(k + 1) =w̃(k) + μe(k)x(k)− μαp(k)

=w̃(k) + μx(k)(n(k)− xT (k)w̃(k))− μαp(k)

=(I− μx(k)xT (k))w̃(k) + μx(k)n(k)− μαp(k),
(9)

where I is the identity matrix. Suppose that n(k) is a zero-

mean random variable, and x(k), n(k), w̃(k) are independent,

then by taking expectations on both sides of the above equa-

tion, we obtain

E[w̃(k + 1)] = (I− μR)E[w̃(k)]− μαE[p(k)], (10)

where R � E[x(k)xT (k)] is the autocorrelation matrix. As-

suming the number of cascaded transfer functions to construct

the feature matrix F is m, we conclude that the coefficients

of p(k) are the sum of at most 2m + 1 sign functions, thus

the vector μαE[p(k)] is bounded. Indeed, we have

−μαρmax(2m+ 1)1 ≤ μαE[p(k)] ≤ μαρmax(2m+ 1)1,
(11)

where 1 = [1 1 · · · 1]T and ρmax = max{1, |ρ1|, · · · , |ρm|}.

Hence, E[w̃(k + 1)] converges if 0 < μ < 2
λmax

, where λmax

is the largest eigenvalue of R. Therefore, we conclude that,

for 0 < μ < 2
λmax

,

E[w(∞)] = w∗ − αR−1
E[p(∞)]. (12)

TABLE I
THE SPECIFICATIONS OF THE TESTED BANDPASS SYSTEMS

System LCF UCF LTF UTF
w∗ π

4
− 0.05 π

4
+ 0.05 π

4
− 0.15 π

4
+ 0.15

w′∗
π
4
− 0.2 π

4
+ 0.2 π

4
− 0.3 π

4
+ 0.3

w′′∗
π
3
− 0.1π π

3
+ 0.1π π

3
− 0.45 π

3
+ 0.45

VI. SIMULATIONS

In this section, we utilize the LMS and the F-LMS al-

gorithms to identify some unknown bandpass filters. All

unknown systems have order 199, i.e., they contain 200

coefficients. The first bandpass system, w∗, has a narrow

passband frequency. The second bandpass system, w′
∗, has

a wider passband frequency, and the third bandpass system,

w′′
∗ , has the widest passband frequency among the tested

systems. The lower cut-off frequency (LCF), the upper cut-off

frequency (UCF), the lower transition frequency (LTF), and

the upper transition frequency (UTF) of the tested systems are

listed in Table I.

The adopted input signal is a zero-mean white Gaussian

noise with unit variance. The signal-to-noise ratio (SNR) is

20 dB, and the initial vector is chosen as w(0) = [0, · · · , 0]T .

The weight given to the sparsity-promoting penalty function

is selected as α = 0.01. The values of the step-size μ are

reported later for each simulated scenario. The MSE learning

curves of the LMS and the F-LMS algorithms are computed

by averaging the outcomes of 1000 independent trials.

The central frequency of w∗ is π
4 , and the length of the

passband frequency is less than 0.07π; thus, we consider

the complex conjugate zeros e±j π
4 for the transfer function

F (z). Therefore, the feature matrix F is given by (5) in

which pc = −2 cos(π4 ). The magnitude response of the filter

represented by w∗ is depicted in Figure 1(a). Furthermore,

Figure 1(b) shows the impulse response of Fw∗ in which

F is defined by (5); we can observe that Fw∗ is a sparse

vector. In other words, the feature matrix F reveals the hidden

sparsity of the bandpass system w∗. Figure 1(c) illustrates the

MSE learning curves of the LMS and the F-LMS algorithms

considering w∗. As can be seen, the F-LMS algorithm, the

solid red curve, has lower MSE and higher convergence rate

when it utilizes the same step-size as the LMS algorithm, the

dash-dotted black curve. Moreover, for the dashed blue curve,

when the LMS algorithm uses a smaller step-size, 0.002, in

order to attain the same MSE as that of the F-LMS algorithm,

the convergence speed of the LMS algorithm degrades sig-

nificantly. Hence, the F-LMS algorithm outperforms the LMS

algorithm by obtaining lower MSE and higher convergence

rate.

The passband frequency of w′
∗ is [π4 − 0.2, π

4 + 0.2], and

its length, 0.4, is between 0.07π and 0.14π, thus we consider

the complex conjugate zeros e±j(π
4 −0.05) and e±j(π

4 +0.05) for

the transfer function F (z). By utilizing the feature matrix

generated by this transfer function as explained in Section IV,

we can apply the F-LMS algorithm to identify w′
∗. The
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Fig. 1. (a) The magnitude response of the filter represented by w∗ expressed
in decibels; (b) Fw∗ in decibels; (c) the MSE learning curves of the LMS
and the F-LMS algorithms considering w∗.

MSE learning curves of the LMS and the F-LMS algorithms,

considering the bandpass system w′
∗, are represented in Fig-

ure 2(a). We can observe that, by using the step-size 0.003,

the F-LMS algorithm, the solid red curve, has lower MSE

and slightly higher convergence rate in comparison with the

LMS algorithm, the dash-dotted black curve. In the dashed

blue curve, we have used a small step-size, 0.001, for the

LMS algorithm so that it attains the same MSE as the F-

LMS algorithm. We can observe a notable decrease in the

convergence rate of the LMS algorithm.

The passband frequency of w′′
∗ is [π3 − 0.1π, π

3 + 0.1π],
and its length is 0.2π, between 0.14π and 0.21π. Thus, by

Remark 1, the transfer function F (z) should contain three

complex conjugate zeros. For this purpose, we have cascaded

three transfer functions with zeros at e±j(π
3 −0.05π), e±j π

3 , and

e±j(π
3 +0.05π) to form the transfer function F (z). Figure 2(b)

depicts the MSE learning curves of the LMS and the F-LMS

algorithms considering the bandpass system w′′
∗ . As can be

seen, the F-LMS algorithm with the step-size 0.003, the solid

red curve, has lower MSE and slightly higher convergence

speed as compared to the LMS algorithm with the same step-

size. However, when we utilized the step-size 0.001 for the

LMS algorithm in the dashed blue curve to achieve the same

MSE as that of the F-LMS algorithm, we observed a significant
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Fig. 2. The MSE learning curves of the LMS and the F-LMS algorithms
considering: (a) w′∗; (b) w′′∗ .

reduction in the convergence rate of the LMS algorithm.

VII. CONCLUSIONS

In this paper, we advanced how to exploit sparsity in

passband system models utilizing the feature LMS (F-LMS)

algorithms. The F-LMS algorithms for bandpass models ex-

pose their inherent hidden features leading to higher con-

vergence speed and reduced steady-state MSE. The feature

matrices related to passband models are the key ingredient to

achieve the improved performance, and can be applied to many

engineering problems where these kinds of hidden sparsity are

known to exist. Some simulations show the effectiveness of

the proposed F-LMS algorithms when exposing the hidden

sparsity feature.

In forthcoming publications, we will discuss computation-

ally efficient versions of the proposed algorithms along with

their MSE analysis. The derivation of feature adaptive filtering
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utilizing alternative algorithm will also be subject of future

investigation.
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