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Abstract—We present an online method for multiscale data
classification, using the multikernel adaptive filtering framework.
The target application is Twitter sentiment analysis, which is
a notoriously challenging task of natural language processing.
This is because (i) each tweet is typically short, and (ii) domain-
specific expressions tend to be used. The efficacy of the proposed
multiscale online method is studied with dataset of Twitter.
Simulation results show that the proposed approach achieves
a higher F1 score than the other online-classification methods,
and also outperforms the nonlinear support vector machine.

Index Terms—reproducing kernel, sentiment analysis, online
learning

I. INTRODUCTION

This paper addresses the task of classifying a vast amount
of customer reviews of products or services as positive or
negative opinions. This machine learning task is often called
sentiment analysis, and it has gained significant attention over
the years. In particular, the specific social networking service
of Twitter has given measurable impacts on society including
politics, but it is challenging to analyze the polarity of emotion
from tweets posted to Twitter. A major reason is that tweets
tend to include specific expressions (words) depending on
generations, communities, which are changing over time. Also,
each tweet typically contains a few sentences (or often a few
words), which could be grammatically incorrect.

Classification performance is a function of three factors:
preprocessing, feature extraction, and classifier. The existing
preprocessing methods include the morphological analysis
method (consisting of two methods: word segmentation and
part-of-speech tagging) [1], the Porter stemming algorithm
(replacing inflectional forms into their roots) [2], stopwords
[3], [4] (deleting irrelevant words such as the, a and I), to
name a few. In SemEval-2013, NRC-Canada won the 1st
prise; the best score was achieved based on bag-of-words
[5] that were created elaborately and manually by natural
language processing’s experts; the feature vectors were then
classified by the simple-linear support vector machine [6].
The latter one considers the semantic similarity of words and
documents, yielding better performance than the former one
[7], [8]. Although these word representation models such as
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word2vec [9]–[11] are created semantically, they cannot cap-
ture sentiment-polarity information adequately. This is because
words with opposite sentiment polarities may be represented
similar vectors; this is called the good-bad problem [12], [13].
To embed sentiment information in word representations, sev-
eral methods have been proposed such as word refining [14].
For over 60 years, a lot of efforts have been devoted to de-
vising sophisticated preprocessing [15] and feature-extraction
techniques in the natural language processing community.

The importance of online learning is increasing due to the
rapid growth of data volume. Incremental semantic analysis
has become possible [16]. Although long short-term memory
[17] is a novel online learning method and has achieved high
performances, there are few works (if any) which process NLP
data sequentially and focus on the order of input data itself.

The developed preprocessing and feature-extraction meth-
ods enhance the classification performance, the F1 score
reported suggests that the performance needs to be improved
further. Our research question is the following: is it possible
to enhance the classification performance of the Twitter data
(which is notoriously difficult to analyze) by using a classifier
based on the state-of-the-art nonlinear technique? Also, it is of
great interest to develop an online classifier that updates the
classification boundary incrementally due to several reasons
including the large volume of data and the sequential nature
as well as the evolving words in Twitter (see Section 4).

In this paper, we investigate the use of multikernel adaptive
filtering [18], [19] in sentiment analysis. Specifically, each
datum (tweet) is transformed into a feature vector by a
distributed representation model, and those feature vectors
are classified based on multikernel adaptive filtering. The
classification boundary is updated iteratively with training data
which are supposed to arrive sequentially. We use the data
employed in SemEval-2013 competition (see Section 3.1),
and compare the performance (F1 score) of our approach to
the existing online- and batch approaches. Publicly available
pretrained feature vectors based on distributed representation
are employed for our approach because these dimensions
are relatively small (25–300). To measure the performance
of our multiscale online classifier, we apply our method to
Twitter sentiment classification task (positive and negative).
The proposed approach achieves the Macro-F1 score 0.8332,
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while the best score of the existing method was 0.7814.
Multiscaleness of the proposed approach is discussed based
on the experimental results presented in the paper.
Notation: The sets of all real numbers, nonnegative integers,
and positive integers are denoted by R, N and N∗, respectively.
The transpose of vector/matrix is denoted by (·)T. The inner
product and the norm are defined by ⟨a, b⟩ := aTb, ∥a∥ :=√
⟨a,a⟩ for a, b ∈ Rp, p ∈ N∗.

II. ONLINE CLASSIFICATION APPROACH BASED ON
MULTIKERNEL ADAPTIVE FILTERING

We consider the situations in which a sequence (xn)n∈N ⊂
U of input vectors (samples) and a sequence (yn)n∈N ⊂ R of
outputs (labels) arrive in a sequential manner, where U ⊂ RL,
L ∈ N∗, is the input space. The goal of the online classifi-
cation task is then to find a classifier that discriminates those
sequential data as accurately as required. In the following, we
consider the binary classification case.

Let us consider the binary case when the labels are +1
or −1; i.e., yn ∈ {+1,−1} (positive and negative). In this
case, the goal of classification is to find a nonlinear function
φ : U → R that discriminates test data (xtest

n , ytestn ) in such
a way that φ(xtest

n ) > 0 if ytestn = +1, and φ(xtest
n ) < 0 if

ytestn = −1.
Multikernel adaptive filtering model. Our classifier based
on multikernel adaptive filter is given by [18]

φn(x) =
∑
q∈Q

∑
j∈Jq,n

α
(q)
j,nκq(x,xj), n ∈ N,x ∈ U , (1)

where α
(q)
j,n ∈ R is the coefficient to be adjusted in online

fashion, Jq,n ⊂ {0, 1, 2, . . . , n}, and

κq(x,y) := exp

(
−∥x− y∥2

2σq
2

)
, x,y ∈ U , (2)

where q ∈ Q := {1, 2, · · · , Q} are Gaussian kernels with
different kernel parameters σ1 > σ2 > · · · > σQ > 0. The set
Dq,n := {κq(·,xj)}j∈Jq,n

, n ∈ N, is called dictionary for the
qth kernel, and it needs to be constructed in online fashion as
well.

The update of the multikernel adaptive filter has two steps:
(i) the dictionary updating and (ii) the coefficient updating.
Step 1: dictionary updating. The basic idea of our dictionary
growing strategy is the following.

1) Make a smooth boundary using the coarsest (largest-
scale) kernel κ1.

2) Express locally intricate structures of the boundary using
the second coarsest kernel κ2.

3) Express finer local structures using κ3, and so on.
Let us now present the specific procedure. When the new
datum xn arrives, the following error condition is checked
first:

max{1− ynφn(xn), 0} > ϵ (large hinge loss) (3)

for some small constant ϵ ∈ (0, 1). Here, the left side of (3)
is the hinge loss function widely used for classification [20].

If this is unsatisfied, the hinge loss is sufficiently small (i.e.,
the current datum xn is classified correctly), and hence there
is no need to grow the dictionaries. If the error condition
is satisfied, the classification boundary needs to be updated
in the vicinity of xn, and hence there is a chance for the
new functions {κq(xn, ·)}q∈Q to enter the dictionaries. To see
whether the dictionary corresponding to each scale needs to
grow by adding κq(xn, ·), the following coherence criterion
[21] is used for eliminating redundancy from the dictionary:

max
j∈Jq,n

∣∣∣∣∣ κq(xn,xj)√
κq(xn,xn)κq(xj ,xj)

∣∣∣∣∣ ≤ δ (coherence) (4)

for a prespecified threshold δ ∈ (0, 1). This coherence criterion
is first applied to the largest-scale kernel. If it is satisfied,
κ1(xn, ·) is added into the dictionary so that D1,n+1 :=
D1,n ∪ {κ1(xn, ·)}, while all the other dictionaries Dq,n,
q = 2, 3, · · · , Q, stay the same. If it is unsatisfied, the
dictionary D1,n stays the same (i.e., D1,n+1 := D1,n), and
the coherence criterion is applied to the second largest-scale
kernel κ2. If the criterion is satisfied, κ2(xn, ·) is added into
the dictionary so that D2,n+1 := D2,n∪{κ2(xn, ·)}, while all
the others remain the same. If it is unsatisfied, the criterion is
next applied to κ3, and so on.

We finally present our pruning strategy for reducing the
dictionary size as well as for avoiding the overfitting problem.
The basic idea is to eliminate those dictionary elements that
make little contributions to estimation. Specifically, if |α(q)

j,n| ≤
γmax{|α(p)

i,n|}i∈Jq,n,p∈Q for some constant γ ∈ (0, 1), then
its corresponding element is removed from the dictionary, and
update Dq,n+1 accordingly.
Step 2: coefficient updating. The coefficients α

(q)
j,n are up-

dated with the dictionaries updated in Step 1. The coefficient
for the possible new entry is set to zero. The output of our
estimate is simply rewritten as

φn(xn) = αT
nkn = ⟨αn,kn⟩, (5)

where αn := [αT
1,n αT

2,n · · ·αT
Q,n]

T, kn := [kT
1,n kT

2,n

· · ·kT
Q,n]

T, [αq,n]i := α
(q)
ji,n

, i = 1, 2, · · · , |Dq,n|, and
[kq,n]i := κq(xn,xji), i = 1, 2, · · · , |Dq,n|.

We adopt the hinge loss function as a cost function. The
coefficient vector is updated as

αn+1 := αn + η
yn max{1− yn ⟨αn,kn⟩ , 0}

∥kn∥2 + ρ
kn, (6)

where η ∈ [0, 2] is the step size and ρ > 0 is the regularization
parameter. The derivation of (6) is given in the appendix.
Intuitively, the coefficient vector is updated with a large step
when the output of our estimate has the opposite sign to
the training label (as the datum is classified incorrectly in
this case). If the sign is the same and the output has its
magnitude less than one, the coefficients are updated so that
the magnitudes become closer to one.

The multikernel adaptive filter is suitable for classifying
multiscale data. Figure 1 illustrates a conceptual diagram of
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Fig. 1: Multiscale data classification.

TABLE I: The total number of tweets for each polarity
available in 2018/2013.

Positive Negative Neutral
Train 2643/3662 982/1466 3446/4600
Dev 411/575 233/340 531/739
Test 1062/1573 382/601 1176/1640

multiscale data classification, where the classification bound-
ary involves locally intricate structures as illustrated in the
figure. For such data having a multiscale nature, the large-
scale kernel may form a smooth boundary that classifies a
large portion of data, while the small-scale kernel may be
used to form those finer parts of the boundary to classify
those data that cannot be classified correctly by the large-scale
kernel. Although there could be a possibility of overfitting if
one employs kernels with too small scales, the simultaneous
use of different-scale kernels is expected to alleviate it due to
the hierarchical way of dictionary growing.

III. NUMERICAL EXAMPLES

We apply the online multiscale-data classification method
presented in Section II to the sentiment analysis in Twitter. To
compare the performance of the proposed approach and other
existing approaches simply, the dataset of tweets are classified
into two classes: positive and negative.

A. Data description and setup

SemEval-2013 workshop: We show the effectiveness of mul-
tikernel online classification on task 2B ”Message Polarity
Classification, Sentiment Analysis in Twitter1” in SemEval-
2013 [22], where tweets are classified into three groups:
positive, negative, and neutral. SemEval is a competition
style workshop held by Association for Computer Linguistics
(ACL), and it aims to improve the performance of sentiment
analysis tasks and make language resources. Since 2013,
polarity analysis tasks in Twitter have been considered in
the workshop [22]. The posted time of the oldest tweet in
the training data is 13.07.2011 02:18:44.991, and that in the
test data is 06.01.2012 22:50:59.046. Indeed, a quarter of the
training data were posted earlier than all the test data, while
there is no remarkable difference between training and test
data in the latest posted time.
Data download: The tweet text dataset can be attained at the
SemEval-2013 website through Twitter API2. Table I shows

1https://www.cs.york.ac.uk/semeval-2013/task2.html
2API is an abbreviation of Application Programming Interface.

TABLE II: Parameter settings

method parameters
proposed σ ∈ {20.0, 15.0, 12.0, 10.0, 8.0, 6.0, 4.0, 2.0}

γ ∈ {0, 0.001, 0.005, 0.01, 0.05}
ϵ ∈ {0, 0.001, 0.005, 0.01}

η ∈ {0.01, 0.21, 0.41, 0.61, 0.81}
ρ ∈ {0.01, 0.21, 0.41, 0.61, 0.81}
δ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

SVM (Gaussian) log 2C ∈ {−1, 0, . . . , 3}
log 2g ∈ {−15,−14, . . . , 4}

online methods See LIBOL [24].

the number of tweets that were available in 2018 (present
study) and 2013 (SemEval-2013 competition). The number
of available data varies in time because some tweets may be
deleted or become unavailable for several reasons.
Preprocessing: We use the text preprocessing methods
ekphrasis presented by Baziotis [15]. The system was de-
veloped for SemEval-2017 Task 4, Sentiment Analysis in
Twitter, performing tokenization, word segmentation, word
normalization to URLs, hashtags, and user handles.
Feature extraction: Classification is conducted based on
“tweet vector” which is obtained by summing the word vectors
for each tweet. A simple unweighted sum is used since tweets
are typically short and weighting makes no much impacts
on performance. Glove pretrained word vectors with Twitter
dataset [23] of dimension L = 50 are used in the following
experiments. Two similar vectors in the context-based word
representations may have opposite sentiment polarities (the
good-bad problem). The pretrained Glove word-vectors are
refined using the sentiment refinement model for word em-
beddings [14].
Performance measure: F1-measure [22] is adopted as a
performance measure, which is used for the SemEval tasks
and is widely accepted in the natural language processing
community.

B. Comparative methods and parameter setting

Comparative methods: We compare the performance of the
proposed approach to the libSVM [32] as well as some
online learning approach including the library LIBOL [24]
and the single-kernel counterpart of the proposed approach.
The libSVM is simulated as a batch, single-kernel approach.
The compared online-classification algorithms in LIBOL are
divided into two categories. The first-order algorithms are Per-
ceptron [25], A New Approximate Maximal Margin Classifica-
tion Algorithm (ALMA) [26], aggressive Relaxed Online Max-
imum Margin Algorithm (aROMMA) [29], Online Gradient
Descent algorithm (OGD) [28]. The second-order algorithms,
such as Confidence-Weighted learning algorithm (CW) [27],
Narrow Adaptive Regularization Of Weights (NAROW) [30],
and Soft Confidence Weighted algorithm-2 (SCW-2) [31], are
developed after the development of the first-order algorithms.
Parameter settings: The number of kernels is set to M := 2.
First, we use k-means clustering to the train data for de-
termining the kernel-scale parameters approximately. Since
the k-means for k = 10 of the two-point distances of the
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TABLE III: Comparisons to the other approaches for the Glove-based feature vectors.

method Macro-F1 process parameters

proposed 0.8332 online δ = 0.2, ϵ = 0.001, η = 0.41, ρ = 0.21, σ1 = 12.0, σ2 = 8.0, γ = 0.001

single σ = 12.0 0.7461 online δ = 0.2, ϵ = 0.001, η = 0.41, ρ = 0.21, γ = 0.001
single σ = 8.0 0.7022 online δ = 0.2, ϵ = 0.001, η = 0.41, ρ = 0.21, γ = 0.001
Perceptron [25] 0.5172 online

ALMA [26] 0.5427 online η = 0.8, p = 10, c = 0.0625
CW [27] 0.6522 online η = 0.6, a = 1

OGD [28] 0.7359 online t = 1, c = 1
aROMMA [29] 0.7506 online

NAROW [30] 0.7641 online c = 0.25, b = 1, a = 1
SCW-2 [31] 0.7696 online η = 0.9, c = 0.0625, a = 1

SVM (Gaussian) [32] 0.7814 batch t = 2(radial basis function), log 2C = 3, log 2g = −12

training data is approximately 10.0, we select the kernel-
scale parameters close to 10.0. The kernel-scale, step-size,
coherence, hard-thresholding, and regularization parameters
are optimized by grid search within the ranges shown in Table
II respectively. For the single-kernel approach, the parameters
are selected according to basically the same way as the multi-
kernel approach. The parameter choices of the online methods
are in accordance with LIBOL [24].

At the end of the learning, the dictionary sizes of the
proposed approach for the two kernels were D1,n = 1243 and
D2,n = 1330, respectively. For the single kernel method, the
dictionary sizes were Dn = 1140, for σ = 12, and Dn = 3133
for σ = 8.

The proposed approach is fed with the tweets that are
ordered in the posted time.

C. Results

Table III shows comparisons of the proposed approach to
the other methods. Compared to the other online methods,
the proposed approach achieves 7-percent higher F1 score.
Furthermore, the proposed method attains a higher score
than the proposed single-kernel approach and batch single-
kernel SVM. The result shows that the multiscaleness of
the proposed classifier contributes to finding the reasonable
classification boundary. The remarkably high score 0.8332 of
the proposed method suggests the potential usefulness of the
online sentiment analysis in Twitter.

D. Discussions

The proposed approach is an online method, while all the
other approaches in SemEval-2013 task 2B are batch methods.
Online nature is of practical importance because the Twitter
data has an online nature due to the following reasons: (i) the
tweets are posted randomly, and it is impossible in general to
predict when tweets stop arriving and (ii) some new character-
istic expressions emerge one after another. The online method
processes those streaming data on the fly, and it keeps updating
the classification boundary as long as new data keep arriving.
Hence, the online method can adapt flexibly to emerging
expressions as well as tracking possible changes of trends
(e.g., polarity changes of phrases). The onlineness is also
highly advantageous in its potential applications to general

large-volume data, as it significantly reduces the computational
complexity and the memory requirements.

Compared to the single-kernel approach, the multikernel
approach attains the significant gain in performance, while the
total dictionary size is comparable. To be more precise, the
total dictionary size of the multi-kernel approach is smaller
than the dictionary size of the single kernel approach for the
small-scale kernel. This observation indicates that the task has
multiscale nature — the sole use of the small-scale kernel
makes the dictionary size too large since the kernel scale is
too small to estimate the classification boundaries. A large
portion of data (tweets) can be discriminated with the large-
scale kernel, while some portion of them cannot do due to
complicated structures. The small-scale kernel comes into play
here to extract those complicated structures efficiently (see
Fig. 1).

IV. CONCLUDING REMARKS

We proposed the online method for multiscale data analysis,
targeting binary classification tasks in sentiment analysis. The
proposed approach was applied to binary classification by
using the Twitter dataset used in the SemEval-2013 compe-
tition. It achieved the best F1-score 0.8332, while the highest
F1-score among the other online approaches was 0.7696 and
the F1-score of the batch SVM was 0.7814. The proposed
multi-kernel approach also outperformed the single-kernel
counterpart of the proposed approach.

The online nature of the proposed approach has significant
potential advantages. The process of annotating each datum is
made manually by experts and is time-consuming, and thus it
may take an unacceptably long time if one waits until all the
data are annotated. The proposed online approach enables to
perform the annotation and learning processes in parallel, and
this permits real-time data analysis. This is clearly desirable
for users. In conclusion, the remarkably high score achieved
by the proposed approach suggests its potential significance
in online classification of multiscale data.
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APPENDIX: DERIVATION OF (6)
We can assume that kn ̸= 0. We show that the update

equation (6) for ρ := 0 coincides with

αn+1 := αn + η (PCn
(αn)−αn) , (7)

where
Cn := {α ∈ Rrn | yn ⟨α,kn⟩ ≥ 1} . (8)

If αn ∈ Cn (⇔ 1− yn ⟨αn,kn⟩ ≤ 0), then PCn
(αn) = αn.

If, on the other hand, αn ̸∈ Cn (⇔ 1 − yn ⟨αn,kn⟩ > 0),
then the projection onto the halfspace Cn is actually the same
as the projection onto the boundary hyperplane

Hn := {α ∈ Rrn | yn ⟨αn,kn⟩ = 1} . (9)

In this case, the projection is given by

PCn
(αn) = PHn

(αn) = αn +
yn(1− yn ⟨αn,kn⟩)

∥kn∥2
kn.

(10)
Hence, in the general case, the projection can be expressed as

PCn
(αn) = αn +

yn max{1− yn ⟨αn,kn⟩ , 0}
∥kn∥2

kn. (11)

Substituting (11) into (7) yields the update equation (6) for
ρ := 0.
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