
State Space Models with Dynamical and Sparse
Variances, and Inference by EM Message Passing

Federico Wadehn∗, Thilo Weber∗, Hans-Andrea Loeliger
Signal and Information Processing Laboratory

ETH Zurich, Switzerland

Abstract—Sparse Bayesian learning (SBL) is a probabilistic
approach to estimation problems based on representing sparsity-
promoting priors by Normals with Unknown Variances. This
representation blends well with linear Gaussian state space
models (SSMs). However, in classical SBL the unknown variances
are a priori independent, which is not suited for modeling group
sparse signals, or signals whose variances have structure. To
model signals with, e.g., exponentially decaying or piecewise-
constant (in particular block-sparse) variances, we propose SSMs
with dynamical and sparse variances (SSM-DSV). These are two-
layer SSMs, where the bottom layer models physical signals,
and the top layer models dynamical variances that are subject
to abrupt changes. Inference and learning in these hierarchical
models is performed with a message passing version of the
expectation maximization (EM) algorithm, which is a special
instance of the more general class of variational message passing
algorithms. We validated the proposed model and estimation
algorithm with two applications, using both simulated and real
data. First, we implemented a block-outlier insensitive Kalman
smoother by modeling the disturbance process with a SSM-DSV.
Second, we used SSM-DSV to model the oculomotor system and
employed EM-message passing for estimating neural controller
signals from eye position data.

Index Terms—Expectation maximization, factor graphs, hier-
archical state space models, sparse Bayesian learning.

I. INTRODUCTION

Linear Gaussian state space models (SSMs), in combination
with efficient inference algorithms such as Kalman filters and
smoothers [1], have long been a popular model class in signal
processing, econometrics and control. The expressiveness of
linear Gaussian SSMs by themselves is quite limited though.
Therefore, various extensions such as switching SSMs [2] and
many more [3] have been proposed. Another useful extension
is obtained by combining linear SSMs with sparsity [4], [5],
in particular with techniques from sparse Bayesian learning
(SBL) [6]. The key idea of SBL (also known as automatic rel-
evance determination [7]) is to represent a sparsity-promoting
prior

p(x) =∧
N∏
k=1

p(xk), (1)

via the variational representation [8], [9]

p(xk) = sup
sk≥0

N (xk; 0, s2k)ρ(sk), (2)

with k = 1, . . . , N , and with a suitably chosen non-negative
function ρ. Such representations have been called Normals

∗These authors contributed equally.

with Unknown Variances (NUV) [4], [9] and can be used to
represent a large class of sparsity-promoting priors, such as
the Laplace distribution, Student’s t-distribution, etc. [8].

NUV priors are a good match for otherwise linear Gaussian
models. Conditioned on the NUV parameters s = (s1, . . . , sN )
in (2), the remaining model is Gaussian and thus amenable
to inference by Gaussian message passing [4], [10], which
possesses closed-form updates and is computationally very
attractive. To estimate the unknown NUV parameters one
can for example use the expectation maximization (EM)
algorithm [4], [8]. For linear Gaussian SSMs, the E-step can
be performed by Kalman smoothing and the M-step has a
closed-form solution [4], [11]. To account for structure in
the unknown variances, e.g., to model block sparse signals,
we extend the NUV-EM framework to dynamical variances.
For this, unlike in the classical SBL approach [6], the NUV
parameters s are not a priori independent, but instead linked
by SSMs that are driven by sparse inputs. This results in a
hierarchical SSM that can conveniently be represented by a
factor graph [10], [12]. In this factor graph representation, the
estimation can be expressed by the message passing version
of the EM algorithm [13], [14], which is a special case of
variational message passing [15]. To remain in the Gaussian
message passing setting, we approximate the resulting non-
Gaussian EM messages via the Laplace method [16].

Modeling variances of stochastic processes is not a new
idea and a large variety of models have been proposed,
such as GARCH models [17] used in time series analysis,
and hierarchical Gaussian filters [18]. The combination of
volatility models with sparsity, however, appears to be new.
Regarding inference in hierarchical SSMs, most approaches
resort to some form of variational inference [19], which result
in variants of the variational Kalman filter [20].

II. THE SYSTEM MODEL

In the following we present SSMs with dynamical and
sparse variances (SSM-DSV) shown in Fig. 1. These are two-
layer SSMs. The bottom layer (SSM(0)) models physical sig-
nals y(0) = (y

(0)
1 , . . . , y

(0)
N ), and the top layer (SSM(1)) models

the dynamical NUV parameters S(1) = (S
(1)
1 , . . . , S

(1)
N ) of the

signals U (0) or Z(0) feeding into the bottom layer. To allow
for abrupt changes in the dynamical variances, the top layer is
driven by independent sparse inputs U (1) = (U

(1)
1 , . . . , U

(1)
N ),
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Fig. 1: Two-layer non-linear SSM with dynamical standard
deviations S(1) of, the input process U (0) (dashed arrow) or
output process Z(0) (dotted arrow), feeding into the bottom
layer. The top layer is driven by sparse inputs U (1), modeled
by NUVs.

which are modeled by NUVs. The top and bottom layer SSMs
follow

X
(`)
k = A(`)X

(`)
k−1 +B(`)U

(`)
k +W

(`)
k (3)

Y
(`)
k = C(`)X

(`)
k + Z

(`)
k , (4)

with k = 1, . . . , N and ` ∈ {0, 1}. The SSM variables are
X

(`)
k ,W

(`)
k ∈ Rd(`)x , U (`)

k ∈ Rd(`)u , and Y
(`)
k ∈ Rd

(`)
y . The

output of the top layer Y (1) = S(1) is used as the standard
deviation of the input U (0), or alternatively, of the output
process Z(0)

U
(0)
k ∼ N

(
0, (s

(1)
k )2

)
, or Z

(0)
k ∼ N

(
0, (s

(1)
k )2

)
. (5)

This interconnection results in a non-linear SSM. In our
examples in Section IV, the top layer SSMs are first-order
dynamical systems (random walks with sparse increments).
Note that the expressiveness of SSM-DSV is quite broad
though; by choosing appropriate system matrices in the top
layer, it is possible to model signals with sparse, piecewise-
constant (e.g., block-sparse), exponentially decaying, periodic
variances, and more.
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Fig. 2: Factor graph of two-layer SSM and EM messages.

III. INFERENCE AND LEARNING

Here, we review EM message passing and describe how it
is used for learning the unknown variances in SSM-DSV.

A. Expectation Maximization as Message Passing

Graphical models, such as for example the factor graph in
Fig. 2 have cycles, since the unknown parameters θ1, . . . , θN
are not a priori independent. To learn parameters in such
“loopy” graphs, the EM algorithm can be used. If the joint
density represented by the graphical model has a “nice” factor-
ization (e.g., due to the Markov property), the EM algorithm is
conveniently expressed as a message passing algorithm [13],
which can be seen as a special case of variational message
passing [21].

Consider the two-layer model in Fig. 2, which represents

f(y, x, θ) = fA(θ)fB(y, x|θ), (6)

where

fB(y, x|θ) = f0(x0)
N∏
k=1

fk(yk, xk, xk−1|θk). (7)

Let X = (X0, . . . , XN ) be hidden variables, y = (y1, . . . , yN )
fixed observations, and θ = (θ1, . . . , θN ) unknown parameters
(e.g., NUV terms) that we want to estimate via the EM. At
each iteration we update the parameters according to

θ̂new = argmaxθ EX|y,θ̂old [log (fB(y,X|θ))] + log(fA(θ)). (8)

Due to the factorization (7), the first term in (8) splits

N∑
k=1

EpB [log (fk(yk, Xk, Xk−1|θk))] + const , h(θ), (9)

with pB given in (12). By defining

hk(θk) =∧ EpB [log (fk(yk, Xk, Xk−1|θk))] , (10)

hk(·) can be interpreted as a log-domain EM message. To be
consistent with the probabilistic view, the EM message in the
factor graph (Fig. 2) is

←−µEM(θk) =∧ ehk(θk). (11)
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The expectations are computed w.r.t. the densities

pB(xk, xk−1|y, θ̂k) ∝
−→µXk−1

(xk−1)fk(yk, xk, xk−1|θ̂k)←−µXk
(xk), (12)

where −→µXk−1
(xk−1) and ←−µXk

(xk) are sum-product mes-
sages [10], [12] containing summary information of the left
and right part of the graph of fB (Fig. 2). The EM message
passing algorithm then alternates between computing the EM
messages (11) and performing the maximization

(θ̂1, . . . , θ̂N ) = argmax
θ1,...,θN

(
fA(θ)

N∏
k=1

ehk(θk)

)
, (13)

which can efficiently be computed via max-product message
passing [10], in particular if fA(θ) has a nice factoriza-
tion. If the objective function in (13) is Gaussian, then the
optimization (solved by max-product message passing) can
equivalently be performed via sum-product message passing
(i.e., by marginalization) [10].

B. Learning the Unknown Variances by EM
We now particularize this approach to the model shown in

Fig. 1. We restrict ourselves to structured input priors, the
derivation of the EM updates for output priors is analogous
and differs only in the choice of hidden variables.

1) Inference in the Bottom Layer SSM: E-step. To estimate
the unknown NUV parameters S(1), we choose U (0) as hidden
variables. For fixed observations y(0) and fixed S(1) = ŝ(1), the
bottom layer SSM is linear Gaussian. The posterior densities

pB(u
(0)
k |y

(0), ŝ(1)) = N (u
(0)
k ;m

U
(0)
k

, V
U

(0)
k

), (14)

required in the EM update of S(1) are computed by Gaus-
sian message passing (see (12)). To obtain the upwards EM
message (11), we compute

EX,U |y,ŝ(1)
[
log
(
p(y

(0)
k |X

(0)
k )p(X

(0)
k |X

(0)
k−1, U

(0)
k )p(U

(0)
k |s

(1)
k )
)]

(15)

= EpB
[
log
(
p(U

(0)
k |s

(1)
k )
)]

+ const =∧ hk(s
(1)
k ) (16)

from which we get the EM message:

ehk(s
(1)
k ) ∝ 1

√
2πs

(1)
k

exp

(
−
EpB [(U

(0)
k )2]

2(s
(1)
k )2

)
. (17)

M-step. The NUV parameters S(1) are updated (see (13))
according to

ŝ
(1)
` = argmax

s
(1)
`

max
s
(1)
k 6=`

p(s(1))
N∏
k=1

ehk(s
(1)
k ). (18)

Note that neither the EM messages (17) nor p(s(1)) are
Gaussian, and therefore (18) cannot directly be solved by
Gaussian message passing. Using the NUV representation (2),
however, the prior p(s(1)) can be represented via

p(s(1)) = max
s
(2)
1 ,...,s

(2)
N ≥0

p(s(1)|s(2))
N∏
k=1

ρ(s
(2)
k ), (19)

where p(s(1)|s(2)) is a multivariate Gaussian. Next, we de-
scribe how the non-Gaussian EM messages are handled.

2) Inference in the Top Layer SSM: We approximate the
EM messages via Laplace’s method (see [16], Chapter 4.4)
which corresponds to a second-order Taylor approximation in
the log-domain around the mode of

eM ·hk(s
(1)
k ) ≈ N (s

(1)
k ;←−m

S
(1)
k

,
←−
V
S

(1)
k

). (20)

The scalar M > 0 is a free parameter used to influence the
peakiness of the Gaussian approximation and

←−m
S

(1)
k

=

√
EpB [(U

(0)
k )2] =

√
m2

U
(0)
k

+ V
U

(0)
k

(21)

←−
V
S

(1)
k

=
1

2M

(
m2

U
(0)
k

+ V
U

(0)
k

)
. (22)

In the limit M →∞, the EM messages become point densi-
ties. The approximated EM messages can now be interpreted
as Gaussian observations of the NUV parameters S(1) with
mean (21) and variance (22). Optimizing w.r.t. the NUV
parameters S(2) in the top layer SSM, is then the classical
NUV-EM scenario [4], where the M-step is

ŝ
(2)
k =

√
(m

U
(1)
k

)2 + V
U

(1)
k

, (23)

with mU(1) and VU(1) obtained by Gaussian message passing,
from which we also get the posterior distribution

p(s
(1)
k |ŝ

(2)) = N (s
(1)
k ;m

S
(1)
k

, V
S

(1)
k

). (24)

Finally, we set S(1) to the posterior mean

ŝ
(1)
k = m

S
(1)
k

= C(1)m
X

(1)
k

. (25)

C. Resulting Algorithm

The resulting algorithm iterates between Gaussian message
passing in the top and bottom layer SSMs and scalar updates
of the pertaining NUV parameters S(1) and S(2).

EM Message Passing in SSM-DSV

1: Initialize S(1) and S(2) to some constant values.
2: Compute posterior densities (14) by Gaussian message

passing (Kalman smoothing) in SSM(0).
3: Compute EM messages (20) using (21) and (22).
4: Run Gaussian message passing in SSM(1) using (20) as

observations and iteratively update S(2) using (23).
5: Update S(1) using (25).
6: Until convergence not reached, proceed with step 2.

The described algorithm runs the EM till convergence in
the top layer before performing another round of Gaussian
message passing in the bottom layer. Note that instead of
running the EM algorithm for the estimation of S(2) at each
update of S(1) till convergence, performing a few ascent steps
on S(2) significantly improves the runtime and tends to yield
better estimation results. With this modification, the runtime
complexity of the proposed EM message passing algorithm is
actually linear in the number of samples.
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IV. RESULTS AND APPLICATIONS

We present two use cases of SSM-DSV: Robust estimation
in the presence of block outliers and estimation of highly
correlated input signals to a physiologically-motivated SSM.

A. Kalman Smoothing with Block-Outliers

Due to their least-squares error criterion, standard Kalman
smoothers are sensitive to outliers. Robust smoothers such
as [22], [23] assume that outliers are sparse and their usage of
per-sample penalties is suboptimal for measurement outliers
that affect larger segments. By contrast, SSM-DSV are well
suited for modeling dynamical systems that are affected by
contiguous disturbance signals. Simulation setup: Let the bot-
tom layer SSM be the third-order stochastic resonator model
from [20] with

A(0) =

1 0 0
0 cos(ω∆t) sin(ω∆t)/ω
0 −ω sin(ω∆t) cos(ω∆t)

 , (26)

B(0) = 0 ∈ R3 and C(0) = [1, 1, 0]. Further, we chose
∆t = 0.1, the angular velocity ω = 5, the state noise
covariance matrix Σ(0) = [0.005, 0, 0; 0, 0.1, 0; 0, 0, 0.1], and
the measurement noise standard deviation σ

(0)
Z = 1. The

disturbance signal is zero except on the interval J = [250, 300]
(see Fig. 3), where the measurements y(0) are replaced by the
saturation model

y
(0)
k = y

(0)
k1

+ (A− y(0)k1 ) tanh (ε(k − k1)) , (27)

for k ∈ J and where k1 = 250, A = 15 is the maximal
saturation value, and ε = 2/|J | determines how fast the rise
occurs as a function of the artifact duration. In [24] this
model was used for simulating catheter flushes, which lead
to saturations in the arterial blood pressure readings.

Estimation setup: Let the noisy signal y(0), the noise statis-
tics and the bottom layer system matrices A(0), B(0), and
C(0) be given. To capture the unknown disturbance signal, we
model the measurement noise standard deviation as a random
walk with sparse increments U (1):

X
(1)
k = X

(1)
k−1 + U

(1)
k (28)

S
(1)
k = Y

(1)
k = X

(1)
k . (29)

Figure 3 shows the estimation results obtained by EM message
passing and by regular Kalman smoothing. For EM-MP we
used M = 1 (see Eq. (22)) and performed five ascent steps,
i.e., Gaussian message passing, in the top layer SSM and
ten iterations in the bottom layer SSM. Table I compares
the normalized mean squared error (nMSE) ‖ynoise-free −
yest‖2/‖ynoise-free‖2 between the noise-free observation and its
estimate using EM-MP and KS for different artifact durations.

B. Estimation of Group-sparse Inputs

Unknown Gaussian inputs to SSMs can be estimated by
Gaussian message passing [10]. Similarly, sparse inputs can
be estimated by placing a NUV prior on the inputs, and using

Artifact duration [%] 0 2.5 5 10 15 20
nMSE(EM-MP) [%] 1.8 6.3 7.6 12.5 19 35.1

nMSE(KS) [%] 1.8 15.5 40.4 107.7 186.2 274.6

TABLE I: nMSE of estimated output signal (averaged over 50
runs) for EM-MP and KS for varying artifact durations.
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Fig. 3: Top: Estimated sparse NUV parameters S(2). Center:
Structured NUV parameters S(1) representing the standard
deviation of the measurement noise. Bottom: Measured (with
10% artifact contamination), ground truth, and estimated out-
put signal obtained by EM message passing (EM-MP) and
by Kalman smoothing (KS). The output nMSE for EM-MP is
6.5% and 162% for the KS.

the EM algorithm for estimation [4]. Here, we propose SSM-
DSV and EM message passing for estimating group-sparse
input signals. Consider the following application: Given eye
position measurements y(0) (see Fig. 4), the goal is to estimate
the neural controller signal that best explains the observed
trajectory of the eye. Oculomotor neural controller signals,
measured in spikes per second, determine the tension (resulting
force) in the eye muscles, which in turn determines the eye
position. The oculomotor system (eye ball and muscles) can
be modeled as a linear spring-mass-damper system, which can
be represented in state space form [25]. Here, we consider
two types of eye movements: fixations and saccades (fast eye
movements between fixations). While the neural controller
signal stays approximately constant during fixations, it changes
abruptly during saccades. In [26] we assumed that the neural
controller signal changes at (sparse) discrete points in time,
which we estimated by sparse input estimation. With this
approach the estimated neural controller signal is piecewise
constant (see Fig. 4). SSM-DSV provide a more realistic
model for this application. For this, the bottom layer SSM
represents the oculomotor system with the following SSM:[

X
(0),Eye
k

X
(0),Neur
k

]
=

[
AEye BEye

0T 1

][
X

(0),Eye
k−1

X
(0),Neur
k−1

]
+

[
0
1

]
U

(0)
k (30)

Y
(0)
k = (1, 0, . . . , 0)

[
X

(0),Eye
k

X
(0),Neur
k

]
+ Z

(0)
k , (31)

2019 27th European Signal Processing Conference (EUSIPCO)



-40 -20 0 20 40 60 80 100

Time [ms]

0

10

20

y
(0

)  [
°
]

Measured NUV-EM EM-MP

0

1

2

X
(0

),
N

e
u

r  [
a
.u

.] Measured NUV-EM EM-MP

0

1

U
(0

)  [
a
.u

.] NUV-EM EM-MP

0

1
S

(1
)  [

a
.u

.] NUV-EM EM-MP

Fig. 4: Top: Estimated NUV parameter S(1) using sparse
input estimation (NUV-EM) [26] and EM message passing
(EM-MP). Second row: Estimated (group-sparse) input signal
U (0), which is responsible for changing the neural controller
signal X(0),Neur; see (30). Third row: Estimated and measured
neural controller signal from a rhesus monkey [25]. Bottom:
Measured and estimated eye position y(0).

where 0 ∈ R4 is the all-zeros vector and X
(0),Eye
k =

(φk, φ̇k, φ̈k, Fk) ∈ R4 contains the noise-free eye position
φ (in degrees), the velocity φ̇, the acceleration φ̈, and the
resulting force F of the eye muscles on the eye globe. The
state X(0),Neur represents the neural controller signal and is
driven by the group sparse input U (0). The system matrices
AEye ∈ R4×4 and BEye ∈ R4×1 model the oculomotor system
dynamics. In the top layer SSM we model the NUV parameters
of U (0) by the zero-order hold model (28)–(29). Estimation
in the resulting SSM-DSV is performed by EM message
passing as described in Section III-B. We used M = 2
in (22) and performed twenty iterations in the bottom layer
and five iterations at each run in the top layer. Figure 4
shows the eye position y(0) during a saccade together with
the pertaining neural controller signal X(0),Neur. In addition,
the estimated group sparse input U (0) and the block-sparse
standard deviations S(1) are shown.

V. CONCLUSION

In this paper we have proposed a flexible model class
denoted by state space models with dynamical and sparse vari-
ances (SSM-DSV). For inference and learning in these two-
layer models we used EM message passing. SSM-DSV can be
used to model signals with dynamical variances, in particular
signals with group sparse or piecewise constant variances, as
shown in the neural input signal recovery and in the block-
outlier insensitive Kalman smoother examples. The relative
merits of EM message passing in such models, compared to
free-form variational message passing [19], variational Kalman
filtering based conjugate-exponential distributions [20], and
particle filtering [27] remain to be investigated.
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