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Abstract—L1-Principal Component Analysis (L1-PCA) is a
powerful computational tool to identify relevant components in
data affected by noise, outliers, partial disruption and so on. Rele-
vant efforts have been made to adapt its powerful summarization
capacity to time variant data, e.g. in tracking the evolution
of L1-PCA components. Here, we analyze a layered version of
L1-PCA, to which we refer to as Deep L1-PCA. Deep L1-PCA
is obtained by recursive application of two stages: estimation of
L1-PCA basis and extraction of the first rank projector. The
Deep L1-PCA is applied to repeated EEG connectivity measures
and it proves relevant for identifying outliers, changes, and stable
components. Moreover, at each layer, an in-depth analysis of the
mean square error between the data applied at the input layer
and the output projector is provided. The Deep L1-PCA allows to
cope with outliers of different temporal extent as well as to extract
the relevant common component at a reduced computational cost.

Index Terms—L1-norm, PCA, outliers, first rank component
extraction, tensor-based representation of biomedical data

I. INTRODUCTION

L1-Principal Component Analysis (L1-PCA) is a powerful
computational tool to identify relevant components in data
affected by noise, outliers, and partial disruption [1]. Relevant
efforts have been made to adapt its powerful summarization
capacity to time variant data, e.g. in tracking the evolution of
L1-PCA components [2]. Tracking usually applies a moving
window and it presents computational advantages since only
the innovation components are estimated. Nonetheless, this
approach requires a preliminary selection of the window
width, which is set according to the time duration of the
transitory phenomena to be discarded. If the whole dataset
is available, a different hierarchical approach can be applied,
referred to as Deep L1-PCA in the following. A deep
computational architecture is exploited in [3] to extract
Euclidean norm PCA features for face recognition purposes.
Therein, the impact of the layering parameters (depth,
extent) are not discussed. In this paper we present a Deep
L1-PCA obtained by recursive application of data partitioning
and L1-PCA analysis with first rank (K = 1) component

Fig. 1. Deep L1-PCA computation structure.

extraction : R = argmax
RRT=IK

‖XTU:,1:K‖1, K = 1.

An in-depth analysis of the structure of the approximation
error within each layer and among different layers shows
that Deep L1-PCA copes with outliers of different extent
while extracting the relevant common component at a reduced
computational cost. The approach is applied to repeated brain
connectivity measurements and it proves relevant for iden-
tifying stable components, outliers, and minimum required
number of measurements while avoiding any normalization
pre-processing step.

II. DEEP L1-PCA COMPUTING ARCHITECTURE

Before turning to mathematics, herein we illustrate the core
of the Deep L1-PCA computational architecture. In a nutshell,
at the first layer, the original data series is partitioned, and for
each subgroup the first L1-Principal Component (L1-PC) is
computed. The first rank L1-PCs of all subgroups are then
collected to build a new group, which is applied at the input
of the second layer. The second layer applies the process of
partitioning and analysis to the new group, and produces the
input at the next layer. The operation is repeated as many
times as necessary to end up, eventually, with only one global
principal component. Let us remark that from the second layer
on, the data series elements are the unit-norm L1-PCs that
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we’ve identified in the previous layer. Therefore, the new input
vectors are identified apart from a scalar factor, and differ in
nature and range from the original data. This procedure is
exemplified in Fig. 1, where the input data series is given by
a set of bidimensional sequences.

Fig. 2. Time-variant 2D normal data and underlying PDF orientation.

More in general, the input data are a set of N samples of
D-dimensional vectors, and are collected in the data matrix
X = [x1, x2, . . . , xn . . . , xN ] ∈ RD×N . At the k-th layer,
the input data is partitioned and Nk size-wk batches
Rk(n), n = 1, . . . , Nk, are identified. For k = 1, R1(n)
represents the n-th batch of the original data. For k > 1,
Rk(n) contains wk of the Nk−1 PCs found in layer k − 1.
Specifically, the n-th batch Rk(n) collects the data with
index in the set Sk(n) = {(n− 1) · wk + 1, . . . , n · wk}.
It holds that |Sk(n)| = wk ∀n and∑Nk

n=1 |Sk(n)| = Nk · wk = Nk−1, N0 = N and w0 = 1.
Then, the n-th batch, denoted as Rk(n), is processed and the
L1-PC rk(n), n = 1, . . . , Nk, is computed, as follows in (1).
Thus, a reduction of the input data set occurs at each layer,
replacing every n-th wk-size batch with its own principal
component. For Nk the number of batches at layer k, it holds
Nk = N ·

∏k
j=1

1
wj

.1

The L1-PC rk(n) is computed resorting to the fast estimator
in [2], as

rk(n) = Rk(n)bk(n) ·∆k(n) (1)

where the optimal binary vector bk(n) is computed as

argmax
b∈{±1}wk

‖Rk(n)b‖2 and ∆k(n) =
1

‖Rk(n)bk(n)‖2
. Thereby

rk(n) is a normalized version of Rk(n) bk(n). This leads to
Nk separate principal components, each one of them being the
only first L1-PC obtained from the correspondent batch. This
basic operation is repeated several times, until we reach the
final layer K.

It is possible to express the Deep L1-PCA at every layer
with a compact formula, using the Khatri-Rao product.2

To elaborate, we consider the following three matrices:
Bk = [bk−1(1), bk−1(2), . . . , bk−1(n), . . . , bk−1(Nk−1)]

1From now on we assume a simple scenario in which it holds that repeated
partitions of the data lead to a single global component, i.e. N =

∏K
k=1 wk .

In some circumstances, on the other hand, the size N of the original dataset
could not be equally divided by the chosen wk and this could lead to up to
wk − 1 elements to be dealt with separately in some way.

2The Khatri-Rao product of matrices F ∈ RC×E and G ∈ RD×E is
defines as F � G = (F1⊗G1, . . . , FE⊗GE), with ⊗ being the Kronecker
product [5], [6].

∈ {±1}wk−1×Nk−1 grouping the above mentioned optimal
bk−1(n) ∈ Rwk−1

Rk = [rk−1(1), rk−1(2), . . . , rk−1(n), . . . , rk−1(Nk−1)] ∈
RD×Nk−1 collecting all the Nk−1 PCs found in layer k − 1
for k > 1 and set to R1 = X for k = 1
∆k = diag([∆k−1(1),∆k−1(2), . . . ,∆k−1(Nk−1)])
Applying the Khatri-Rao product to Bk ∈ Rwk−1×Nk−1 , we
find

INk−1
� Bk =



bk−1(1) 0wk−1
. . . 0wk−1

0wk−1
bk−1(2) . . . 0wk−1

...
...

. . .
...

0wk−1
0wk−1

. . . bk−1(Nk−1)


It is possible to compactly express the whole set of layer 1
projectors as the results of matrix multiplication between
the original data set X and a “Khatri-Rao size-modulated”
maximizer collection B2:

R2 = [r1(1), . . . , r1(N1)

= [R1(1), . . . ,R1(N1)] · (I
N1×N1

� B2) ·∆2

= X · (I
N1×N1

� B2) ·∆2

R2
D×N1

= X
D×N

( I
N1×N1

� B2
w1×N1︸ ︷︷ ︸

N1 · w1 ×N1 = N ×N1

) ·∆2
N1×N1

(2)

and, for k = 2, 3, . . . ,K:

Rk = Rk−1 · (INk−1
� Bk) ·∆k ∈ RD×wk−1 (3)

Then, Rk can be expressed as

Rk = X · (I
N1×N1

� B2) ·∆2 · . . . · (I
Nk−1×Nk−1

� Bk) ·∆k

= X ·
k∏

j=2

[(I
Nj−1×Nj−1

� Bj) ·∆j ]

(4)

At the last considered layer, the “global” principal component
will be extracted from the last subset:

rK = RK · (I
NK×NK

� BK+1) ·∆K+1 (5)

where NK = 1, BK+1 = bK(1) ∈ {±1}NK−1×1 and
∆K+1 = ∆K(1) ∈ R+. It is clear that the Deep L1-PCA i)
differs from the results of overall L1-PCA and ii) conveys a
further information, that is the relative distance of L1-PCA
solutions found at the intermediate layers.
The Deep L1-PCA is exemplified on the random data set
in Fig. 2, which plots 500 samples X = [x1, · · · , x500]
of a zero-mean bivariate normal distribution with marginal
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Fig. 3. Time-variant data and first order L1-PCA approximation at different layers.

Fig. 4. Aggregation and PCA executed from the original data set to the single
common “global” principal component (layer 3).

variances 1/4, 4, and with principal axis rotation varying
according to a pulse θ(t) represented in Fig. 2, (green line).
The original data set X are parsed to produce the first layer
L1-PCA basis vectors (red arrows in Fig. 3 left); the results of
the “parallel” L1-PCs are applied at the input of the next layer
and processed to produce the second and eventually the third
layer (red arrows in Fig. 3 center and right). Finally, the global
deep L1-PC rK , K = 3, is obtained. In further results on
this dataset, not reported here for compactness’ sake, we have
compared the first basis vectors obtained at each layer by the
deep L1-PCA and by the classical L1-PCA computed on the
corresponding original measurements. The unitary energy PCs
computed in the two cases differ by a mean square difference
in within 10-1 - 10-4. Still, let us observe that the mean square
difference is expected to depend on the temporal variability of
the original data distribution.

III. APPLICATION TO BRAIN CONNECTIVITY
MEASUREMENTS

Deep L1-PCA can be used to extract robust information
across different trials and to identify outliar trials. The signals
of interest were provided by the Berlin BCI group and they
were collected during brain computer interface (BCI) task.
Seven healthy subjects contributed with their motor imagery
performances, where visualizing the movements stimulates the
brain area responsible for the motor activation and modulates
the brain activity, recorded as an EEG signal filtered between

0.05 and 200 Hz and digitized at 1000 Hz with 16 bit (0.1 µV)
accuracy. Continuous EEG were recorded during motor tasks
imagery session without feedback [4]. Attention was drawn
on F4 and CP6 electrodes which are in frontal and central-
parietal brain areas which are supposed to be involved in the
task. Suppose yF4 and yCP6 are the vectors containing the
corresponding EEG signals. Their coherence and phase lag
can be analyzed as a function both of time and frequency
through by computing their spectral wavelet coherence map:

CohyF4,yCP6
=

|S(C∗yF4
(a, b) CyCP6

(a, b))|2

S(|CyF4
(a, b)|2) S(|CyCP6

(a, b))|2)
(6)

where CyF4
(a,b) and CyCP6

(a,b) represent the continuous
wavelet transforms of time series yF4 and yCP6 at varying
scales a and positions b, while S is a smoothing factor in
time and scale. Specifically, the coherence between the two
electrodes depends on frequencies and time measured with
respect to a per-trial stimulus delivery instant [9]. Examples
labelled as 1, 2, . . . , 10 appear in of Fig. 4.

The measurements in motor imagery conditions have been
carried out on a total of 100 repetitions (trial), and are collected
in a third-order tensor A ∈ RL×M×N , comprising modes:
frequency span 0 − 32 [Hz] (L = 85), time duration of
each trial M = 400 [ms], and number of trials considered
N = 100. Here is shown the application of Deep L1-PCA
on the vectorized versions of the coherency maps, which had
the goal of extracting a common component and identify
the minimum number of trials on which it is consistently
estimated, as well as discriminate outliers and changes. The
first layer aggregation is shown in Fig.4: the original data
tensor A lays at the starting layer and N1 = 20 batches are
obtained at the first layer by slicing it every w1 = 5 wavelet
coherence maps, each of which is then represented as a column
vector of the input data matrix X .

Every subgroup X(n) spans the original data set from
the “(n− 1) · w1 + 1”-th to the “n · w1”-th (1-5, 6-10, . . . ,
96-100) element, and it undergoes L1-PCA to yield the corre-
sponding first L1-PC. The resulting N1 = 20 L1-PCs form the
input at the second layer. The partition and L1-PCA estimation
process is carried out until the final layer (K = 3).
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It is worth noting that for non-negative entries (i.e., [x]i ≥ 0)
1M = argmax

b∈{±1}M
‖Xb‖22. This implies that the L1-PC is a scaled

version of the mean, in the presented work it can be considered
in the perspective of being a layered computation of the mean,
for appropriate intermediate scalings of the PCs.
We analyze here the Mean Square value of the Error (MSE)
between the L1-PCs with respect to the originating batches
at different layers. Firstly, the layer 1 L1-PCs set and the
N0 elements of the input dataset are considered. In Fig. 5
we show the comparison between L1-PCs and the original
data elements as well as the MSE scatterplot summarizing the
results achieved for different L1-PCA width wk=1 = 5, 10, 20.
Secondly, each element in layer 2 was confronted with its
originating batch in layer 1 and the MSE values obtained
were plotted into Fig. 6. Similar results, not reported her
for compactness’ sake, have been obtained at layer 3. In
Figs. 5,6, we recognize that the largest mean and spread of the
MSE is observed between layer 1 L1-PCs and original data,
consistently across all widths wk, whereas the MSE show a
decreasing trend on consecutive layers, since the local L1-PCs
approximate the global L1-PC for any considered w.

Next, we plot the MSE between each and every L1-PC
in a layer and the corresponding set of wavelet coherence
maps from which it derives. In Fig. 7 the plots are organized
in different columns corresponding to the L1-PC layers, and
rows corresponding to the selected width w. The plots are
equipped with a series of vertical lines so as to outline
the correspondence between the considered L1-PC and the
original data batches; no lines appear when the final single
L1-PC is compared with each element of the starting dataset.

From this analysis, we recognize that for any width w,
the global principal component obtained at the end of the
grouping and PCA process turned out to be substantially the
same, i.e. the overall obtained final component is consistent
across any initially chosen aggregating interval width (see
Fig. 8). Thereby, the estimate achieved at the first layer
is a good approximation of the one emerging at the final
layer. In application, this can be exploited to select the width
(number of trials) of interest, indicating that a stable estimate
is obtained considering a reduced number of trials.

Finally, focusing on the 20 L1-PC elements at layer 1,
we analyze the Minkowski distance Dij = (

∏P
p=1 |ri(p) −

rj(p)|)1/k, k = 1, P = L · M between layer 1 PCs. In
Fig. 9 we display the distance matrix as a heatmap; zero
values in the principal diagonal are displayed in black, dark
red hues represent closer distances whereas largest distances
appear in white. The Minkowski distance matrix highlights
the L1-PC component which mostly “differs” from the others.
The representation allows to identify w1 = 5 coherence maps
corresponding to mismatching behaviours (see Fig.10). The
same analysis, repeated at higher layers, allows to identify
longer and longer groups of trials differing from the common
behaviour. Thereby, the Deep L1-PCA computational architec-
ture provides a tool to highlight ouliers of different temporal
extent.

Fig. 5. Top: MSE between layer 1 L1-PCs and corresponding batches
from the original data. Botton: zoomed first steps of how MSE (layer k vs.
layer (k − 1)) scatterplot points are generated, for k = 1.

Fig. 6. MSE between every layer 2 L1-PC and its corresponding layer 1
subgroup/batch vs. various aggregation interval widths w = 5, 10, 20.
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Fig. 7. MSE between L1-PCA at every layer and their corresponding maps
in the original dataset.

Fig. 8. Global components (layer 3) for each of the grouping parameters w.

To sum up, applying the Deep L1-PCA to the repeated
measurements (trials) has allowed us to i) identify the common
component(s) at a reduced computational cost, ii) robustly
identify outlier trials, and iii) assess the minimum number of
trials on which the global component is consistently estimated;
besides, this has been accomplished by iv) getting rid of
unnecessary normalization tasks, which are usually performed
on different acquisitions: the inherently normalization of the
L1-PCA basis avoids computation of local data features such
as variance or mean, which usually act as nuisance parameters
and affect the performances of further processing/detection
stages.

IV. CONCLUSION

In this work we have proposed a layered version of L1-PCA,
to which we refer to as Deep L1-PCA. The first layer acts on
the original data, which are partitioned in groups; on each

Fig. 9. Layer 1 Minkowski distances matrix heatmap.

Fig. 10. Layer 1 L1-PCA typical PCs (rk=1(n)) - n = 1, 2, 8 vs. the
differing element n = 15 (bottom right).

group, the L1-PCA basis is estimated and the first component
is extracted. The first components are collected and form the
basis of the next layer. Then, by recursive application of a more
and more compact representation is obtained. At each stage,
an inherent normalization is carried out, and Deep L1-PCa is
robust to local data features such as variance or mean, which
usually act as nuisance parameters and affect the performances
of further processing/classification stages.The Deep L1-PCA
is applied to repeated brain connectivity measurements and
it proves relevant for identifying outliers changes and stable
components, as well as to assess the minimum number of
measurements on which the global component is consistently
estimated. Further work is devoted to analyze the theoretical
differences between the global component emerging from
Deep L1-PCA and the global component obtained by straight-
forward L1-PCA.
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