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Abstract—Recently, massive multiple input multiple output
(MIMO) is considered as a promising technology to significantly
improve the spectral efficiency (SE) and energy efficiency (EE) of
fifth generation (5G) networks. Effective control of the transmit
power and other network resources helps to maximize energy
efficiency of massive MIMO systems. In this work, an energy
efficient power control algorithm is proposed for uplink massive
MIMO systems with zero forcing (ZF) detection and imperfect
channel state information (CSI) at a base station (BS). By using
large system analysis, we first derive closed-form lower bound
spectral efficiency expression. Then, by utilizing methods from
fractional programming theory, an energy efficient power control
algorithm is derived. Numerical results validate the effectiveness
of the proposed power control algorithm and show the impacts
of maximum transmitter power and minimum rate constraints
on energy efficiency maximization.

Index Terms—Massive MIMO, Spectral Efficiency, Energy
Efficiency, Fractional Programming Theory.

I. INTRODUCTION

Emergence of various mobile broadband networks and ser-
vices is causing a substantial increment in mobile data traffic
[1]. In order to support this mobile data traffic, improving the
spectral efficiency is one of the major recommendations of
the forthcoming 5G networks [1], [1], [3]. However, given
the dramatic growth of the number of connected devices
and networks, improving the spectral efficiency by increasing
the transmit power seems not sustainable due to economical,
operational and environmental concerns [4]. Hence, along with
spectral efficiency, energy efficiency is considered as another
critical design criterion for 5G networks [1], [4].

By adopting a very large number of antennas at the BS,
which is called massive MIMO [3], 5G networks can greatly
improve the spectral efficiency and energy efficiency [3].
Massive MIMO is expected to increase the spectral efficiency
10× and simultaneously improve energy efficiency in the order
of 100× as compared to current mobile networks [3].

Recent studies show that optimal allocation of transmit
power and other network resources helps to maximize the
energy efficiency of massive MIMO systems [4], [6], [7], [11].
In [6], optimal resource allocation is proposed to maximize
the energy efficiency in massive MIMO systems. An iterative
algorithm is formulated under a realistic power consumption
model. Assuming uniform rates for each user, the algorithm
aims to achieve optimal energy efficiency in the system. A
power control algorithm for energy efficiency maximization in
5G systems is proposed in [9]. The authors develop a unified

framework for energy efficiency maximization under transmit
power and quality of service (QoS) constraints. A more general
energy efficiency optimization algorithm that investigates the
hidden monotonic structure of energy efficiency maximization
problem is proposed in [10]. By combining fractional program-
ming theory and sequential convex optimization, the authors
develop sub-optimal and sequential energy efficient power
control algorithms. The results show that an interplay between
fractional programming and sequential optimization helps to
develop effective energy efficient power control algorithms.

In this work, an energy efficient power control algorithm is
proposed in uplink massive MIMO systems with ZF detection
and imperfect CSI at the BS. Minimum mean square error
(MMSE) based channel estimation is considered at the BS.
By using large system analysis, a closed-form lower bound
spectral efficiency expression is formulated. Then, by utiliz-
ing methods from fractional programming theory, an energy
efficient power control algorithm is derived under maximum
transmit power and minimum rate constraints at each user.
Simulation results are provided to validate and consolidate the
theoretical analysis.

The rest of the paper is organized as follows. In Section
II, the system model for uplink massive MIMO is presented.
Energy efficiency is formulated in Section III. Energy efficient
power control algorithm is derived in Section IV. Numerical
results are discussed in Section V and conclusions are drawn
in Section VI.

II. THE MASSIVE MIMO SYSTEM MODEL

We consider a single cell uplink massive MIMO system
where the BS is equipped with M antennas to serve K single
antenna users in the same time frequency resource. Let x =√p s denote the complex valued K×1 transmitted signal from
the K users. Then, an M × 1 received signal y at the BS is
give by [5]

y = Gx + n (1)

where G represents an M×K Rayleigh fading channel matrix
between the BS and the K users with gmk , [G]mk being the
channel coefficient between the mth antenna of the BS and
the kth user; s = (s1, s2, · · · , sK)T is the information bearing
vector with E{ssH} = IK and p = [p1, p2, · · · , pK ] ∈ RK+ is
the power allocation vector applied to all users. The vector n
represents additive white Gaussian noise at the BS antennas
with zero mean and variance σ2 [8]. In the subsequent section,
we further describe the uplink channel model.
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A. Uplink Rayleigh Fading Channel Model

The physical channel between each user and the BS anten-
nas is subjected to pathloss, shadowing and multipath fading
effects. Considering all these propagation effects, the channel
model for uplink massive MIMO is expressed as [2]

G = HD
1
2 (2)

where D = diag{β1, β2, · · · , βK} ∈ RK×K is a diagonal
matrix and represents the large scale fading (LSF) that show
pathloss and shadowing effects with elements βk = d−vk ψ

k
,

dk is the Euclidean distance between the BS antenna and the
kth user, v is the pathloss exponent and ψ

k
represents a log-

normal shadowing [4]. H ∈ CM×K represents the multipath
fading effect. We consider a Rayleigh fading channel model
in which the elements of H are assumed to be independent
and identically distributed random variables with CN (0, 1)
elements [1], [8]. We assume G to be unknown and MMSE
based channel estimation is considered at the BS as reported
in Section II-B.

B. MMSE-based Channel Estimation

In a real-world scenario, the true channel matrix G is
unknown and estimated at the BS. To simplify the analysis,
we assume that the LSF component is perfectly known both
at the BS and the user. Thus, estimation is done only for H.
With this assumption, the MMSE based channel estimate of
the kth user channel, gk ∈ CM×1, is given by [2]

gk = ĝk − g̃k (3)

where ĝk represents the channel estimate and g̃k represents
the channel estimation error. For large MIMO systems, the
elements of ĝk and g̃k are also modeled to have complex
Gaussian distribution as [2]

ĝk ∼ CN (0, β̂kI)
g̃k ∼ CN (0, β̃kI)

(4)

where β̂k =
τpρpβ

2
k

1+τpρpβk
is the variance of the channel estimate,

β̃k = βk

1+τpρpβk
is the variance of the channel estimation error,

τp ≥ K is the pilot symbol length of the users per coherence
interval [2], ρp represents the normalized transmit signal-to-
noise ratio(SNR) of the pilot symbol and I is the identity
matrix.

C. Spectral Efficiency in Massive MIMO Systems

Let an M × K matrix W be the model for a ZF detector
which depends on the channel estimate, Ĝ, and is given by
W = Ĝ(Ĝ

H
Ĝ)−1, then the BS processes the received vector

by premultiplying (1) with WH as [8]

x̂ = WHy = WHGx + WHn. (5)

Then, the detected signal for user k is given by [8]

x̂
k

=
√
pk E{wHk gk}sk +

K∑
i6=k

piwHk gisi

+
√
pk
(
wHk gk − E{wHk gk}

)
sk + wHk n

(6)

where wk is the detector for user k. The signal to interference
plus noise ratio (SINR) of the kth user is expressed as [8]

γ
k
(p) =

pk|E{wHk gk}|2∑K
i=1 piE{|wHk gi|2} − pk|E{wHk gk}|2 + σ2E||wk||2

.

(7)

With SINR in (7), the uplink achievable sum rate of the system
is given by [8]

Rs = B
(
1− τp

T

) K∑
k=1

log2(1 + γ
k
(p)) (8)

where B is the bandwidth of the system, (1 − τp
T ) accounts

the pilot overhead and T is the coherence interval [6]. The
achievable sum rate in (8) is calculated by approximating
the overall interference as additive Gaussian noise. Since the
overall interference is the sum of a Gaussian distributed terms
that characterizes the channel estimation error and a number
of independent multiuser interference terms, the central limit
theorem guarantees the accuracy of this approximation, espe-
cially for systems with large number of BS antennas [8]. Thus,
(8) is expected to be sufficiently tight and tractable to derive
analytical closed-form spectral efficiency expression [8].

D. Asymptotic Spectral Efficiency Formulation

Assuming large number of BS antennas and users, an
asymptotic achievable sum rate is derived from (7) and for-
mulated in Theorem 2.1.

Theorem 2.1: When both the number of BS antennas and the
users become very large and satisfy M ≥ K + 1, a closed-
form lower bound expression for the uplink achievable sum
rate is given by

Rs , B
(
1− τp

T

) K∑
k=1

log2

(
1 +

pk(M −K)β̂k∑K
j=1 pj β̃j + σ2

)
(9)

where β̂k and β̃j are the variance of the channel estimate and
the channel estimation error, respectively that are given in (4).
The proof is omitted due to space limitation.
The result in Theorem 2.1 shows that the spectral efficiency
depends only on the LSF channel coefficients and the system
parameters. As a result, complicated signal processing that
involves large-dimensional matrices from small scale fading
channel coefficients is avoided. For easy analysis, the SINR
in (9) is represented in compact form as

γ
k
(p) =

pkbk

σ2 +
∑K
j=1 pjwj

(10)

where bk = (M−K)β̂k, wj = β̃j , and p = (p1, p2, · · · , pK
)T

is the power allocation vector of the users. We use (9) and
(10) to formulate the proposed energy efficiency optimization
algorithm.
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E. Power Consumption Model in Massive MIMO Systems
Accurate modeling of the system power consumption is re-

quired to formulate the energy efficiency and to obtain reliable
guidelines on energy efficiency optimization with respect to
the system parameters [6]. The total power consumption of the
proposed uplink massive MIMO system is given by the sum
of transmitted power and circuit power (CP) consumption as

Ptot = Ptx + Pcp (11)

where Ptx is the power consumed by the power amplifier.It
accounts for the power used for uplink pilot and data trans-
mission which is expressed as

Ptx =
(
1− τp

T

) K∑
k=1

1

ηk
pk +

τp
T

1

ηk
Kpp (12)

where ηk ∈ (0, 1) is the power amplifier efficiency of user k.
Pcp represents the circuit power consumption of the system
given by

Pcp = ρaM + σscR̄0 + Θ0 (13)

where ρa , χ(PTC+PCE+PLP) denotes the circuit power con-
sumption per BS antenna, χ represents the impact of cooling
and other effects at the BS, PLP is the power consumption for
linear processing, PTC accounts for the power consumption of
transceiver chains and PCE denotes the power consumption
for channel estimation [6]. σscR̄0 accounts for the power
consumption that increases with the uplink data rate with
scaling factor σsc. To simplify our analysis, the rate dependent
power consumption is assumed to be fixed [6]. Θ0 shows a
static circuit power consumption and it is mostly assumed as
fixed [6]. Finally, plugging (12) and (13) into (11), the total
system power consumption is expressed as [9]

Ptot(p) =
K∑
k=1

µkpk + P0 (14)

where µk = (1− τp
T ) 1

ηk
and P0 is the sum of the pilot power

consumption and circuit power consumption of the system.

III. ENERGY EFFICIENCY IN MASSIVE MIMO SYSTEMS

The energy efficiency ( in bits/Joule ) of a wireless system is
commonly defined as a benefit-cost ratio, where the achievable
rate is compared with the associated energy consumption of
the system [8]. One of the well known established metrics to
measure this benefit-cost ratio is the global energy efficiency
(GEE) which is given by [6], [11]

GEE(p) =
B
(
1− τp

T

)∑K
k=1 log2(1 + γ

k
(p))∑K

k=1 µkpk + P0
. (15)

Based on this expression, the energy efficient power optimiza-
tion problem is formulated as [9]

max
p

GEE(p) =
B
(
1− τp

T

)∑K
k=1 log2(1 + γ

k
(p))∑K

k=1 µkpk + P0

subject to: 0 ≤ pk ≤ Pmax,k ∀k
log2(1 + γ

k
(p)) ≥ R

0,k
∀k

(16)

where Pmax,k is the maximum transmit power constraint and
log2(1 + γ

k
(p)) ≥ R

0,k
is the minimum rate requirement

(or the QoS constraint) at each user. Due to the nonconcave
objective function and the nonconvex QoS constraint, (16) is a
nonlinear fractional programming problem and intractable to
solve analytically [9], [11]. Therefore, to tackle this challenge,
we utilized methods from fractional programming theory such
as the Dinkelbach algorithm [12] to solve the problem. The
Dinkelbach algorithm is a tool that helps to solve concave-
convex fractional programming (CCFP) problems by solving
a sequence of an easier problem which converges to the global
solution [12].

A. Fractional Programming: Proof of Concept
The idea of the Dinkelbach algorithm is built on the relation

between a fractional program

max
x∈S

f(x)

g(x)
(17)

and an equivalent substructive function

F (λ) = max
x∈S

(
f(x)− λg(x)

)
. (18)

where S denotes the set defined by the constraints and F (λ)
is an auxiliary function with parameter λ [12]. If we assume
that f(x) and g(x) are continuous, g(x) is positive and S
is compact, then F (λ) is existed and continuous. Besides,
F (λ) is strictly decreasing and has a unique root at λ∗. If
we consider x∗ ∈ S and λ∗ = f(x∗)

g(x∗) , then x∗ is a solution of
(17) if and only if

x∗ = arg max
x∈S

(
f(x)− λ∗g(x)

)
. (19)

As a result, solving a fractional programming problem is
equivalent to finding the unique zero of the auxiliary function
F (λ) which can be done by using the Dinkelbach algorithm
formulated in [12].

IV. ENERGY EFFICIENT POWER CONTROL ALGORITHM
FORMULATION

As stated in Section III-A, fractional programming provides
efficient tools to maximize a fractional function when the
numerator is a concave function, the denominator is a convex
function and the constraint set is convex [12]. But, due to the
multiuser interference term in (9), the objective function in
(16) does not have a concave numerator. Therefore, finding the
global solution of (16) is computationally intensive. To tackle
this issue, we first employ a lower-bound on logarithm to
approximate the objective function; then we apply the Dinkel-
bach algorithm to find the optimal solution [7]. Specifically, for
all γk(p), γ̄ ≥ 0, we get the following logarithmic inequality

log2(1 + γ
k
(p)) ≥ αk log2(γ

k
(p)) + βk (20)

that is tight at γk(p) = γ̄ when αk and βk are adaptively
calculated as [7]

αk =
γ̄

γ̄ + 1

βk = log2(1 + γ̄)− γ̄

γ̄ + 1
log2 γ̄.

(21)
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By using the approximation in (21), the lower-bound for the
objective function in (16) is reformulated as

GEE(p) ≥
B
(
1− τp

T

)∑K
k=1[αk log2(γ

k
(p)) + βk]∑K

k=1 µkpk + P0
. (22)

Assuming pk = 2qk , where q = (q1, q2, · · · , qK)T ∈ R, (22)
is further simplified as

h(q) ,
B
(
1− τp

T

)∑K
k=1[αk log2(bk) + αkqk + βk]∑K
k=1 µk2qk + P0

−
B
(
1− τp

T

)∑K
k=1[αk log2(σ2 +

∑K
i=1 wi2

qi)]∑K
k=1 µk2qk + P0

.

(23)

By using (23), the optimization problem in (16) is reformu-
lated as

max
q

h(q)

subject to: 0 ≤ 2qk ≤ Pmax,k ∀k
log2(1 + γ

k
(p)) ≥ R

0,k
∀k.

(24)
It is shown in [7] that for any given αk and βk, both the
numerator and denominator of (23) are differentiable, and
concave and convex in qk, respectively. Besides, the minimum
rate constraint can be reformulated as

2qkbk + (1− 2R0,k )
(
σ2 +

K∑
i=1

wi2
qi
)
≥ 0 (25)

which is convex in qk [14]. As a result, (24) is a fractional
programming optimization problem which can be solved by
means of fractional programming tools [12] such as the
Dinkelbach algorithm [12]. Finally, the complete iterative
procedure for the proposed energy efficient power optimization
is summarized in Algorithm 1.

Algorithm 1 Energy efficient power control algorithm.
A. Initialization:
1. Set maximum iterations N , tolerance ε and n = 0.
2. Initialize the power allocation p(0) with a feasible value.
3. Set γ̄(0)

k
= γ(0)

k
(p) and compute α(0)

k and β(0)
k from (21).

B. Iterative Operation:
1: n = n+ 1
2: Solve (24) via Dinkelbach algorithm withα(n−1)

k , β
(n−1)
k

3: Set q(n) = arg maxh(q) and then p(n) = 2q(n)

.
4: Set γ̄(n)

k
= γ(n)

k
(p) and update α(n)

k andβ(n)
k from (21).

5: Until converegence of p? orn = N .
Output: p?

V. SIMULATION RESULTS AND ANALYSIS

We evaluate the performance of the proposed power control
algorithm for EE maximization. First, we analyze the accuracy
of the closed-form lower bound SE approximation in (9).
Then, the impacts of maximum power and minimum rate
constraints on EE maximization are analyzed. We assume the
pilot is transmitted at maximum power and optimization is

done to the power allocation for data transmission. For the
simulation, we assume that the users are distributed uniformly
in a circular cell of radius 250 m except for an exclusion zone
(Rmin ≤ 35 m) near the BS [2]. We use the standard system
parameters shown in Table I [6]. The log-normal shadowing
standard deviation is σsh =8 dB and the path loss exponent is
v = 3.8. All users are assumed to have the same maximum
transmit power constraints (Pmax,k = Pmax) and the same
minimum rate constraints (R0,k = R0) for all k. We deploy
CVX with the MOSEK solver [14] to simulate the system.

TABLE I: Part of the simulation parameters.

Parameter Value Parameter Value
T 200 ρa 0.002 W
B 20 MHz Θ0 0.8 W

(M,K) (200 , 10 ) σscR̄0 0.4 W
τp 10 ηBS 0.39
ρp 5 ,10 ηUE 0.3

Figure 1 compares the closed-form lower bound spectral
efficiency in (9) with Monte-Carlo realization in (8). The result
shows that the gap between analytical approximation and the
simulated values is very small. Thus, it is reasonable to design
the proposed energy efficient power optimization algorithm by
using this closed-form spectral efficiency approximation.
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Fig. 1: Spectral efficiency versus uplink transmitter power.

Figure 2 shows the energy efficiency in (15) with the SE in
Figure 1. As it is shown, the energy efficiency is a unimodal
function [11] with the transmit power and this is the key
feature which allows to save energy by energy efficient power
allocation.

Figure 3 shows the impact of maximum power constraint
on the global EE achieved by the proposed power control
algorithm. Simulation results from the equal power allocation
algorithm are included as a reference [13]. The result shows
that in low transmit power regime, increasing the maximum
available transmit power is energy efficient. Whereas, when
the transmitter power grows large, the system EE saturates at
a certain level. This is because once Pmax is large enough to
attain maximum EE, the excess fraction of the transmit power
is no longer used and increasing the transmitter power further
cannot improve the EE.
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Fig. 2: Energy efficiency versus uplink transmitter power with
spectral efficiency in Figure 1.
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Fig. 3: Impact of maximum transmit power constraint on
global energy efficiency.

Finally, Figure 4 shows the impact of the minimum rate
constraint on the EE of the proposed power control algorithm.
The result shows that when R0 is small, the global EE
remains unchanged. This is because when R0 takes a small
value, the power optimization solution that maximizes the
EE can also satisfy the minimum rate requirements of each
user. Meanwhile, when R0 increases, the EE decreases. This
is because when the minimum required rate of each user
increases, an excess fraction of the power should be allocated
to the users that have the worst links to achieve the required
rate and which results in a lower EE in the system.

VI. CONCLUSION

In this work, we have investigated and analyzed an energy
efficient power control algorithm in uplink massive MIMO
system. To this end, by utilizing tools from fractional pro-
gramming theory, an energy efficient power control algorithm
has been derived. Numerical results have been done to validate
the effectiveness of the proposed algorithm. The impacts of
transmitter power and minimum rate constraints on global
energy efficiency optimization have been analyzed. The results
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Fig. 4: Impact of minimum rate constraint on global energy
efficiency. We assume Pmax =20 dBm and R

0,k
= R0 ∀k.

show that the global energy efficiency increases with the
maximum power constraint and decreases with the minimum
rate constraint.
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