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Abstract—Narrowband direction-of-arrival (DOA) estimates
are commonly used for source localization, parametric spatial au-
dio coding, and directional filtering. As previously shown, a linear
least squares direction estimate can be obtained by minimizing
the difference of expected and observed inter-microphone phase
differences. In this work, it is shown that phase wrapping induces
severe estimation errors especially at frequencies just below
spatial aliasing frequencies and in low signal-to-noise ratios. A
cost function to mitigate the influence of phase wrapping errors
on the DOA estimation is proposed. Even though the proposed
cost function is nonlinear, it is shown that one iteration of a
gradient descent method with proper initialization provides a
large improvement when compared to the linear least squares
solution.

Index Terms—Direction-of-arrival estimation, narrowband,
microphone arrays, phase wrapping, source localization

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is a commonly re-
quired step in microphone array processing. Especially, nar-
rowband DOA estimators are used for source localization and
counting [1], parametric spatial audio coding and processing
[2], [3] and informed spatial filtering [4].

A multitude of DOA estimation approaches has been pro-
posed (c.f. [5] and the references therein) based on signal
subspaces [6], [7], time-differences-of-arrival [8], [9], inter-
microphone phase differences [10], [11], and steered response
power (SRP) [12], [13]. In [11] a phase-differences-based
method has been proposed which supports arbitrary array
geometries and requires low computational complexity. It
involves minimizing the squared error between observed and
expected phases of cross power spectral densities (CPSDs) of
microphone pairs. Phase values computed from the observed
complex-valued CPSDs are limited to the range (−π, π]. So-
called phase wrapping occurs when disturbances, caused by
reverberation, noise or estimation errors, change the original
phase near ±π to a value close to ∓π. As the errors between
observed and expected phase in [11] are measured using the
Euclidean distance, severe DOA estimation errors can occur
in case of phase wrapping.

In this contribution, we first analyze when phase wrapping
can lead to large DOA estimation errors. We then propose
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a method to find a DOA estimate which is more robust
against phase wrapping. Therefore, the least squares problem
from [11] is reformulated taking into account that the DOAs
corresponding to phase values of +π and −π are close.

The remainder of this paper is organized as follows. In
Section II the DOA estimator proposed in [11] is reviewed
and its limitations are analyzed in Section III. To mitigate
the consequences of phase wrapping in the DOA estimation,
an improved method is proposed in Section IV, and its
performance is evaluated and discussed in Section V. Finally,
conclusions are provided in Section VI.

II. PROBLEM DESCRIPTION

In Sections II-A and II-B, we present the signal model
and review the weighted least squares (WLS) DOA estimator
proposed in [11], respectively.

A. Signal Model

We assume a microphone array of M microphones at
positions ri = [rx,i, ry,i, rz,i]

T
, i = 1, . . . ,M . The short-

time Fourier transform (STFT) representation of the received
microphone signals at time index λ and frequency index k are
combined into a vector

x (k, λ) = [X1 (k, λ) , X2 (k, λ) , . . . , XM (k, λ)]
T

= xs (k, λ) + xν (k, λ) . (1)

Here, xs (k, λ) = [Xs,1(k, λ), . . . , Xs,M (k, λ)]T represents
a signal corresponding to a single free-field and far-field
sound source. It should be noted that at each time and
frequency a different source can be active. This assumption
is known as W-disjoint orthogonality and commonly holds
for mixtures of speech signals [14], [15]. The second term
xν (k, λ) = [Xν,1(k, λ), . . . , Xν,M (k, λ)]T models micro-
phone self-noise and/or a diffuse sound component. There-
fore, xν (k, λ) is either uncorrelated or exhibits frequency-
dependent spatial coherence, e.g., corresponding to an
isotropic diffuse sound field [16]. As each time instance
and discrete frequency can be processed independently, the
dependence of time and frequency is dropped for brevity where
possible.

B. Weighted Least Squares DOA Estimator

The DOA estimator in [11] is based on minimizing the error
between observed and expected phase differences of (a subset
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of) microphone pairs. Precisely, the phase difference between
the two microphones corresponds to the phase of their CPSD.
For M microphones, let

B = {β1, β2, . . . , βB}
= {(1, 2) , . . . , (1,M) , . . . , (M − 1,M)}
=
{

(i, j) ∈ N2 | 1 ≤ i ≤M − 1, i < j ≤M
}

(2)

denote the ordered set of all B = |B| = M
2 (M − 1) unique

pairs of microphones.
Let Φ̂βb

, b = 1, . . . , B, denote a CPSD estimate for
microphone pair βb. Then, all B observed phases can be
summarized in a vector

µ̂ =
[
∠Φ̂β1

,∠Φ̂β2
, . . . ,∠Φ̂βB

]T
. (3)

Given a source direction of azimuth ϕ and elevation ϑ,

n (ϕ, ϑ) = [cos (ϕ) cos (ϑ) , sin (ϕ) cos (ϑ) , sin (ϑ)]
T (4)

defines a unit-norm vector pointing from a reference point,
e.g., the coordinate system origin, to the source position. The
expected path difference of sound traveling from the source to
i-th and j-th microphones of microphone pair βb is obtained by
projecting the direction vector n onto the position difference

dβb
= rj − ri (5)

of microphone pair βb. Path difference and phase difference
are related by a physical constant, the wavenumber

κ(k) = 2π
c

f(k)
= 2π

2Lc

fsk
. (6)

Here, c denotes the speed of sound in meters per second, fs is
the sampling frequency and L is the STFT frame length. The
vector of all expected CPSD phases µ is calculated by Qn,
where

Q = κ [dβ1
,dβ2

, . . . ,dβB
]
T
. (7)

Depending on the frequency f(k) microphone pair βb is
excluded from the estimation if it operates above its spatial
aliasing frequency

fA,b =
c

2 ‖dβb
‖
. (8)

This is achieved by pre-multiplying both the observed CPSD
phases µ̂ and Qn with a diagonal weighting matrix W =
diag (W11, . . . , Wbb, . . . ,WBB) with entries

Wbb(k) =

{
1 if f(k) ≤ fA,b
0 otherwise

. (9)

An estimate of the source direction vector n̂ = [n̂x, n̂y, n̂z]
T

can be obtained by solving the weighted least squares (WLS)
problem

arg min
n

‖Wµ̂−WQn‖2 . (10)

Its solution is given by

n̂ =
[
QTWQ

]−1
QTWµ̂. (11)

Note that n̂ is not necessarily of unit norm. Estimates of ϕ
and ϑ can be obtained from a normalized version of n̂:

ϕ̂ = atan2

(
n̂y
‖n̂‖

,
n̂x
‖n̂‖

)
= atan2 (n̂y, n̂x) , (12)

where atan2 (·) is the four-quadrant inverse tangent, and

ϑ̂ = arcsin

(
n̂z
‖n̂‖

)
. (13)

III. ANALYSIS AND ORACLE UNWRAPPING

For a microphone pair βb which is operated near its spatial
aliasing frequency, the expected phase of the CPSD, κdT

βb
n,

is close to ±π if the sound source direction points in a similar
direction as the axis defined by the position difference of the
microphone pair (cf. (6), (8)). The estimated CPSD

Φ̂βb
= Φs

βb
+ Φνβb

+ ∆̃Φβb

= Φs
βb

+ ∆Φβb
(14)

is comprised of the true CPSD Φs
βb

= E
{
Xs,iX

∗
s,j

}
and an

error term ∆Φβb
. If the noise components Xν,m are mutually

uncorrelated, Φνβb
vanishes. To also consider the case in which

the noise components exhibit spatial coherence, e.g., modeling
a diffuse component of reverberation, the error term ∆Φβb

represents both estimation error and a coherence contribution.
Due to the error term the observed phase of a CPSD might
change from ±π ∓ ε1 to ∓π ± ε2. For this case of phase
wrapping, the corresponding phasor representation of (14) is
illustrated in Figure 1.

Taking into account the phase of Φs
βb

, we define that the
observed phase is wrapped if the following condition applies:∣∣∣∠Φ̂βb

− ∠Φs
βb

∣∣∣ > π. (15)

If the additive error term in (14) is known, e.g., in a simula-
tion environment, the phase wrapping can be corrected. This
correction is referred to as oracle unwrapping in the remainder
of this paper. The unwrapped phase for the b-th microphone
pair is given by

µ̃βb
=


∠Φ̂βb

+ 2π if ∠Φ̂βb
− ∠Φs

βb
< −π

∠Φ̂βb
− 2π if ∠Φ̂βb

− ∠Φs
βb
> π

∠Φ̂βb
otherwise

. (16)

Phase wrapping of ∠Φ̂βb
can significantly enlarge the error

contribution of pair βb since ∠Φ̂βb
and κdT

βb
n are of opposite

sign. The phase error, as depicted in Figure 1, is ε1 + ε2, not
2π− (ε1 + ε2). The WLS cost function which is minimized in
(10) does not reflect this. Hence, the least squares solution,
strongly influenced by outliers, can lead to a severe DOA
estimation error. To overcome the limitations of the cost
function based on the Euclidean distance, a more suitable cost
function is introduced in the following section.
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Fig. 1. A phasor representation of (14) with phase wrapping.

IV. PROPOSED SOLUTION

As seen in Section II, the cost function in (10) is advanta-
geous because the solution is given in closed-form and thus
yields low computational complexity. However, as discussed
in Section III, it is largely influenced by errors of those
microphone pairs suffering from phase wrapping. This is
undesirable as it could lead to erroneous DOA estimates.
Instead of measuring the squared Euclidean distance of the

observed and expected CPSD phases, i.e.,
∣∣∣∠Φ̂βb

− κdT
βb
n
∣∣∣2,

the squared Euclidean distance of the corresponding phasors
in the complex plane yields a more suitable error measure. It
takes into account that phase values of ±π are close and can
be written as∥∥∥exp

(
∠Φ̂βb

)
− exp

(
 κdT

βb
n
)∥∥∥2 , (17)

where  =
√
−1. Separating real and imaginary parts, the

combined cost function with error contributions from all
selected microphone pairs then reads

ξ (ϕ, ϑ) =

∥∥∥∥[cos (Wµ̂)
sin (Wµ̂)

]
−
[
cos (WQn (ϕ, ϑ))
sin (WQn (ϕ, ϑ))

]∥∥∥∥2 , (18)

where cos (·) and sin (·) are applied elementwise. It can be
shown that minimizing (18) is equivalent to minimizing the
narrowband PHAT-weighted version of the SRP cost function.
Azimuth and elevation estimates can then be obtained as(

ϕ̂, ϑ̂
)

= arg min
ϕ,ϑ

ξ (ϕ, ϑ) . (19)

Unfortunately, (19) is a non-convex in (ϕ, ϑ). Therefore, it is
suggested to obtain a (locally optimal) solution by applying
an iterative method, such as a quasi-Newton method with
cubic line search [17], [18]. The gradient of (18) can be
derived analytically and the Hessian is updated according to
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [19]–
[22]. Iterations are repeated until the algorithm has converged,
i.e., either all components of the gradient are less than a
specified tolerance γgrad or the norm of the Newton step falls
below the tolerance γstep. Note that this new problem formula-
tion does not pose any restriction on the array geometry. The
proposed method is referred to as the phase wrapping robust
(PWR) DOA estimation method.

V. PERFORMANCE EVALUATION

To compare the performance of the proposed solution to
the WLS solution [11], several simulations were conducted.
Due to space constraints, the evaluation is limited to one- and
two-dimensional arrays and noise excitation.

A. Description of Simulations
A uniform linear array (ULA) of M = 5 microphones with a

spacing of 3.4 cm and a uniform circular array (UCA) of radius
3.4 cm with M = 8 microphones serve as examples. For up to
two-dimensional arrays only one value, the azimuth angle, is
estimated. Therefore, the DOA estimation performance can be
characterized by mean and standard deviation of the absolute
angular (azimuth) deviation defined by

ε = E

{∣∣∣∣arccos

(
n̂Tn

‖n̂‖

)∣∣∣∣} (20)

and

σ =

√
E

{∣∣∣∣ arccos

(
n̂Tn

‖n̂‖

) ∣∣∣∣2}− ε2. (21)

Additionally, for the one-dimensional case, the angle between
n̂ and n is computed considering the ambiguity of the azimuth
angle w.r.t. the array axis.

In total, 20 000 realizations with azimuth angles distributed
uniformly in [0, 2π] were computed and averaged to ap-
proximate the expectation operation. The source positions
were simulated to be on a circle of 2 m radius around the
microphone array center, which coincides with the coordinate
system origin. White Gaussian noise was used as a source
signal. The microphone signals were obtained by filtering
the source signal with an anechoic room impulse response
describing the transfer function between source position and
microphone. Additionally, independent white Gaussian noise
of variance σ2

ν was added to each microphone signal to achieve
a signal-to-noise ratio (SNR) of

SNR = 10 log10

(
Sref/σ

2
ν

)
, (22)

where Sref denotes the signal power received at one of the
microphones (i.e., the reference microphone).

The STFT uses a Hann window [23] and a frame length
of L = 2048 with 50% overlap. To estimate the short-term
CPSDs, five consecutive frames are averaged. The sampling
frequency is set to 48 kHz. The tolerances for convergence
are set to γgrad = γstep = 10−6 and the quasi-Newton
implementation from MATLAB [24] is used.

The following methods are compared:
• WLS-OU: weighted least squares [11] with oracle un-

wrapping using (16),
• WLS: as proposed in [11],
• PWR-Rand-Con: PWR method randomly initialized and

repeated until convergence is achieved,
• PWR-WLS-Con: PWR method initialized by WLS solu-

tion and repeated until convergence is achieved,
• PWR-WLS-One: PWR method initialized by WLS so-

lution and conducting one iteration (only in Figures 3
and 4).
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Fig. 2. Performance measures in dependence of SNR at fixed frequency
f(k) = 1664Hz close to spatial aliasing frequency fA = 1667Hz of ULA.

B. Results and Discussion

Firstly, the performance is studied for a fixed frequency
close to a spatial aliasing frequency of one of the microphone
pairs. Figure 2 shows the mean and the standard deviation
of the absolute azimuth deviation for different SNRs for the
ULA. As expected, the oracle unwrapping provides an upper
performance bound as the phase errors in (10) are correctly
quantified after unwrapping. The performance of WLS being
worse than the oracle demonstrates that errors due to phase
wrapping, as described in Section III, actually occur. The
proposed method with random initialization performs worst.
Due to the random initialization, only local minima of (18) are
obtained, even in high SNR conditions. Therefore, the random
initialization is not considered further. For positive SNRs,
the PWR-WLS approach is better than the WLS algorithm,
e.g., at 10 dB ε decreases from about 10 ◦ to 3 ◦ and σ
decreases from 20 ◦ to 3 ◦. For SNRs greater than 5 dB the
PWR-WLS performance is very close to the performance
with oracle unwrapping. For lower SNRs, many microphone
pairs suffer from phase wrapping which cannot be corrected
by the proposed algorithm as the initial values from the
WLS algorithm are too far from the optimum. Hence, only a
local optimum of (18) is obtained which does not necessarily
correspond to an improved direction estimate.

Secondly, the frequency-dependent DOA estimation perfor-
mance is evaluated for the two example array configurations.
Figures 3 and 4 display the means and the standard deviations
of the absolute azimuth deviation at different frequencies. The
SNR is selected to be 10 dB. Vertical dashed lines mark spatial
aliasing frequencies and the numbers of active microphone
pairs, i.e., non-zero entries in W, are indicated alongside.
For both arrays the mean and the standard deviation of
the estimation error using the WLS algorithm increase for
frequencies just below spatial aliasing frequencies. Hence,
phase wrapping errors degrade the estimation performance
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Fig. 3. Performance measures at 10dB SNR for ULA.
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Fig. 4. Performance measures at 10dB SNR for UCA.

of WLS. Again, applying the oracle unwrapping before, the
performance does not degrade. It can be seen that mean and
standard deviation increase a bit just after each spatial aliasing
frequency. This is a result of using fewer microphone pairs as
pairs above their spatial aliasing frequency are excluded. In the
frequency region just below a spatial aliasing frequency the
performance, in terms of both mean and standard deviation, is
considerably increased using the proposed method. Either the
performance is on par with the oracle (e.g., below 2300 Hz
for ULA and below 3000 Hz for UCA) or considerably better
than WLS (e.g., 2400 Hz for ULA and 3500 Hz for UCA).

Towards the highest spatial aliasing frequency of each array,
the standard deviation of the estimation error for PWR-WLS
exceeds the one of the WLS method. Significant errors are
observed when more than one microphone pair suffers from
phase wrapping. If these cases are excluded, the standard
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deviation for PWR-WLS and WLS are similar (not shown).
As those pairs above their spatial aliasing frequencies are
excluded, fewer microphone pairs are available towards the
highest spatial aliasing frequency. When the portion of micro-
phone pairs suffering from phase wrapping becomes too large,
the robustness limit is exceeded, and the proposed solution
fails. Obtaining an improvement with PWR-WLS cannot be
guaranteed when the initialization by the WLS solution is
severely wrong. Therefore, PWR processing is only useful
when a sufficient number of microphone pairs is available.

The performances of PWR-WLS-Con and PWR-WLS-One
are very close, which demonstrates that conducting one itera-
tion is sufficient. Note that the BFGS quasi-Newton method re-
duces to steepest descent if only the first iteration is conducted
and the Hessian is initialized with an identity matrix. Thus, the
computational complexity is further reduced. Furthermore, the
additional step of PWR is only necessary for certain frequency
bands. It depends on the SNR how far the frequency region
extends below a spatial aliasing frequency in which the WLS
methods performs poorly. In large parts of the frequency range
PWR processing is unnecessary, e.g., from 2600 Hz to 4000 Hz
for the ULA, and from 3600 Hz to about 5000 Hz for the UCA
under test.

VI. CONCLUSION

The influence of phase wrapping errors on the weighted
linear least squares narrowband DOA estimator from [11] was
investigated theoretically and using simulations. It has been
shown that phase wrapping especially occurs if a microphone
pair is operated closely below its spatial aliasing frequency.
When lowering the SNR conditions, the amount of phase
wrapping errors increases. The Euclidean distance of CPSD
phases used in the original WLS approach to quantify the
phase errors leads to estimation errors. It is not suitable to
quantify phase errors properly as it does not reflect that phase
values of ±π are close. Therefore, measuring the phase errors
in the complex plane is proposed and a corresponding cost
function is introduced. It is shown to provide a more robust
solution in simulations for different array geometries. The
proposed solution builds on the result of [11] and achieved
with only one iteration a significant improvement for the ULA
and UCA under test. The additional complexity can be limited
by computing the proposed solution only for selected fre-
quency bands, which can be determined experimentally for a
given array geometry and SNR conditions. Future work could
include a comprehensive evaluation with real-world signals
in reverberant environments. Moreover, the development and
investigation of alternative strategies to increase the robustness
just below the spatial aliasing frequency could be performed.
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