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Abstract—We revisit the problem of blind calibration of
uniform linear sensors arrays for narrowband signals and set
the premises for the derivation of the optimal blind calibration
scheme. In particular, instead of taking the direct (rather in-
volved) Maximum Likelihood (ML) approach for joint estimation
of all the unknown model parameters, we follow Paulraj and
Kailath’s classical approach in exploiting the special (Toeplitz)
structure of the observed covariance. However, we offer a sub-
stantial improvement over Paulraj and Kailath’s Least Squares
(LS) estimate by using asymptotic approximations in order to
obtain simple, (quasi-)linear Weighted LS (WLS) estimates of
the sensors’ gains and phases offsets with asymptotically optimal
weighting. As we show in simulation experiments, our WLS
estimates exhibit near-optimal performance, with a considerable
improvement (reaching an order of magnitude and more) in the
resulting mean squared errors, w.r.t. the corresponding ordinary
LS estimates. We also briefly explain how the methodology
derived in this work may be utilized in order to obtain (by
certain modifications) the asymptotically optimal ML estimates
w.r.t. the raw data via a (quasi)-linear WLS estimate.

Index Terms—Sensor array processing, gain estimation, phase
estimation, self-calibration, weighted least squares.

I. INTRODUCTION

Array processing offers a host of signal processing tools
serving to infer essential information related to signals im-
pinging on the array. The accuracy of the associated estimates
naturally depends not only on conventional, modeled error-
sources (such as noise), but also on modeling-errors which
reflect possible deviations (in practice) of the array parameters
from their nominal values. To mitigate such modeling errors,
e.g., in the gains and phases of the elements of the array, a
calibration procedure is usually employed.

While “offline” calibration (i.e., prior to the “operational”
period), using known calibration signals when possible, is
relatively simple, self or blind calibration is typically a more
desirable, yet a more challenging task. In this paper, we
address the blind calibration of the gains and phases in a sensor
array within the framework of narrowband signals. Naturally,
this problem has already been widely addressed in the litera-
ture and is quite well-studied. A few important examples are
Paulraj and Kailath’s Least Squares (LS) (based) estimators
for the unknown sensor gains and phases [1], Friedlander and
Weiss’ eigenstructure method [2], which jointly calibrates the
array and estimate the sources’ Direction-Of-Arrivals (DOAs),
and the direct (rather involved) Maximum Likelihood (ML)
approach, proposed in [3] by Chong and See, incorporating
also mutual coupling as well as errors in the sensor positions,

in which the ML Estimate (MLE) is pursued by an iterative
algorithm. More recent examples are due to Liu et al.’s [4]
and Wijnholds and Noorishad [5], where a diagonal Weighted
LS (WLS) and the weighted alternating LS estimators are
proposed, resp. Nevertheless, these weighting approaches are
essentially heuristic and are not shown (nor claimed) to be
optimal.

In this paper we revisit the problem of blind sensor gains
and phases estimation, when the sources’ DOAs and powers,
as well as the noise level, are considered unknown. We
derive closed-form (approximate) expressions for Optimally-
Weighted LS (OWLS) estimates of the gains and phases. The
provided (non-iterative) solutions are efficiently computed, and
as we demonstrate in simulation, the resulting Mean Squared
Errors (MSEs) are improved (in some scenarios) by more
than an order of magnitude w.r.t. the MSEs attained by the
Paulraj and Kailath’s ordinary LS estimators, and approach the
performance bounds (which are otherwise attained asymptot-
ically only by joint ML estimation of all the unknown model
parameters).

A. Notations

We use x,x and X for a scalar, column vector and matrix,
resp. The superscripts (·)T, (·)∗, (·)† and (·)−1 denote the
transposition, complex conjugation, conjugate transposition
and inverse operators, resp. Further, |z| and ∠z denote the
modulus and angle of a complex scalar z ∈ C, resp., while
<{z} and ={z} denote its real and imaginary parts, resp. We
use IK to denote the K × K identity matrix. E[·] denotes
expectation and the Diag(·) operator forms an M×M diagonal
matrix from its M -dimensional vector argument.

II. PROBLEM FORMULATION

Consider a uniform linear array of M sensors, each with
an unknown (deterministic) gain and phase response, and the
presence of D < M (unknown) narrowband sources, centered
around some common carrier frequency with a wavelength λ,
which are sufficiently far from the array to allow a planar
wavefront (“far-field”) approximation. Thus, let us denote the
unknown gain and phase offset parameters as ψ ∈ RM×1+ and
φ ∈ RM×1, resp., where ψm and φm are (resp.) the unknown
gain and phase offsets of the m-th sensor.

More specifically, assuming the received signals are Low-
Pass Filtered (LPF)1 and sampled at (at least) the Nyquist

1The bandwidth of the LPF exceeds the bandwidth of the widest source.
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rate, the vector of sampled (baseband) signals from all the M
sensors is given by (for all t ∈ {1, . . . , T})

r[t] = ΨΦ (A(θ)s[t] + n[t]) , ΨΦx[t] ∈ CM×1, (1)

where

(i) Ψ , Diag(ψ) ∈ RM×M+ , Φ , Diag
Ä
eφ
ä
∈ CM×M ;

(ii) s[t] , [s1[t] · · · sD[t]]T ∈ CD×1 denotes the vector of
sources with wavenumber k = 2π/λ, impinging on the
array from azimuth angles θ , [θ1 · · · θD]T ∈ RD×1;

(iii) A(θ) , [a(θ1) · · · a(θD)] ∈ CM×D denotes the array
manifold matrix, with the steering vectors a(θd) ,[
1 ekγ cos(θd) · · · ek(M−1)γ cos(θd)

]T ∈ CM×1 as its
columns (γ being the inter-element spacing);

(iv) n[t] ∈ CM×1 denotes an additive noise vector, as-
sumed to be (both spatially and temporally) indepen-
dent, identically distributed (i.i.d.) zero-mean circular
Complex Normal (CN) [6] with a covariance matrix
Rn , E

[
n[t]n[t]†

]
= σ2

nIM , where σ2
n is considered

unknown; and
(v) x[t] denotes the signal that would have been received in

the absence of gain or phase offsets, namely with Ψ =
Φ = IM .

We also assume that the sources may be modeled as mutu-
ally uncorrelated random processes. Therefore, in this work,
s[t] is considered as an i.i.d. zero-mean circular CN vector
process with an unknown diagonal covariance matrix Rs ,
E
[
s[t]s[t]†

]
. Furthermore, we assume s[t] and n[t] are also

uncorrelated. As a consequence, it follows that

r[t] ∼ CN (0M ,R) ,∀t ∈ {1, . . . , T}, (2)

where 0M ∈ RM×1 is the (M -dimensional) all-zeros vector
and

R , E
[
r[t]r[t]†

]
= ΨΦCΦ∗Ψ ∈ CM×M , (3)

C,E
[
x[t]x[t]†

]
=A(θ)RsA(θ)† + σ2

nIM ∈ CM×M , (4)

where we have used Ψ† = Ψ and Φ† = Φ∗.
The problem at hand can now be formulated as follows.

Given the statistically independent measurements {r[t]}Tt=1

whose (identical) distribution is prescribed by (2), estimate
the unknown (deterministic) parameters {ψ,φ}.

Notice that in this “blind” setup, for this formulation,
θ, σ2

n and the diagonal elements of Rs are considered as
nuisance parameters. However, for other problems described
by the same model, the parameters of interest, and accordingly
the nuisance parameters, may be defined differently. For
example, in the DOAs estimation problem, θ are the “goal”
estimands, whereas ψ,φ, σ2

n and the diagonal elements of
Rs are considered as nuisance parameters. Nevertheless, our
goal here is to provide an (asymptotically optimal) estimation
scheme for ψ and φ, based on the understanding that the
measurements {x[t]} of a perfectly calibrated sensor array
would be preferable (in terms of the attainable performance) to
{r[t]} in other estimation problems described by this model.

III. APPROXIMATE OPTIMAL BLIND CALIBRATION

We begin by recognizing that an (asymptotically) optimal
solution to our problem would be obtained by joint ML
estimation of ψ,φ,θ, σ2

n and the diagonal elements of Rs,
which (asymptotically) yields efficient estimators ([7]) of
ψ,φ. However, since the derivation of the likelihood equations
for this model is rather cumbersome, which, at any rate,
leads to a highly nonlinear system of equations, and since
the sufficient statistic of this model is the sample covariance
matrix of the measurements “R , 1

T

∑T
t=1 r[t]r[t]

† ∈ CM×M ,
we resort to (approximated) OWLS estimation of ψ,φ based
(only) on “R.

A. Approximated OWLS Estimation of the Sensor Gains

The proposed estimators we shall present are in fact en-
hanced versions of the LS estimators proposed by Paulraj
and Kailath [1] on the premises of the following observation.
Since the array manifold matrix A(θ) is a Vandermonde
matrix (e.g., [8]) and all the signals involved are uncorrelated,
the covariance matrix of a perfectly calibrated array C is
a Toeplitz matrix (e.g., [9]). Therefore, using the fact that
|Rij | = |Cij |ψiψj , we can eliminate the dependence on the
unknowns {Cij} by observing that

log

Å |Rij |
|Rk`|

ã
= log(ψi) + log(ψj)− log(ψk)− log(ψ`) (5)

for any four indices satisfying i− j = k− ` (i.e., Rij and Rk`
lie on the same diagonal, and therefore so do Cij = Ck`).

Based on the relation (5), and due to the fact that, in
practice, the true covariance matrix R is not available, it
was proposed in [1] to use “R instead of R and collect
all the nonredundant relations for which (i, j) and (k, `)
pairs lie on the same main/super diagonals, to get a total
of kψ ,

∑M
m=2m(m− 1)/2 equations of the form (5).

Denoting ψ̃m , log(ψm), collecting all kψ elements {µijk` ,
log
Ä
|R̂ij |/|R̂k`|

ä
} (and adding the required reference equa-

tion2) into the vector µ ∈ R(kψ+1)×1, we get the LS estimatễ
ψLS ,

Ä
HTH

ä−1
HTµ ⇒ “ψLS , exp

Å̂̃
ψLS

ã
, (6)

which stems from µ ≈ H‹ψ, where H ∈ R(kψ+1)×M

is the matrix (consisting only of 0s, ±1s and ±2s) of the
corresponding coefficients determined by (5) for different
possible values of {i, j, k, `} (see [1] or [10] for the explicit
description of H), and exp (·) operates elementwise.

Indeed, theoretically, “R can be made arbitrarily close to R
by increasing (appropriately) the sample size T . However, in
practice, the available sample size is always limited and is
oftentimes fixed. Therefore, rather than relying on the coarse
approximation “R ≈ R, which leads to the estimate (6), we
propose a more refined analysis, which takes into account the
estimation errors and exploits (some of) their (approximated)
statistical properties for obtaining a more accurate estimator.

2For the exact details the reader is referred to [1] or [10].
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More formally, for any finite sample size T , we have“R , R+ E ⇒ R̂ij = Rij + Eij , ∀i, j ∈ {1, . . . ,M}, (7)

where {Eij} denote the estimation errors in the estimation of
{Rij}. Hence, rewriting (5) with {R̂ij} replacing {Rij} yields

µijk` = log

Ç
|R̂ij |
|R̂k`|

å
= log

Å |Rij + Eij |
|Rk` + Ek`|

ã
(8)

= log

Å |Rij |
|Rk`|

ã
+ log

Å |1 + Eij/Rij |
|1 + Ek`/Rk`|

ã
(9)

, ψ̃i + ψ̃j − ψ̃k − ψ̃` + εijk`, ∀i− j = k − `, (10)

so that we now have the exact relation

µ =H‹ψ + ε ∈ R(kψ+1)×1, (11)

where ε is the transformed “measurement noise” in the result-
ing system of linear equations (11), collecting {εijk`} with
the respective corresponding indices. Now, from the Gauss-
Markov theorem [11], the Best Linear Unbiased Estimator
(BLUE) of ‹ψ from µ is given by the OWLS estimator̂̃

ψOWLS ,
Ä
HTΛ−1ε H

ä−1
HTΛ−1ε (µ− ηε) , (12)

where ηε , E [ε] and Λε , E
î
(ε− ηε) (ε− ηε)

T
ó

are the
mean and covariance matrix of ε, resp. The BLUE attains
the minimal attainable MSE matrix out of all linear unbiased
estimators.

Thus, our goal now is to obtain closed-form expressions
(even if approximated ones) for ηε and Λε in terms of the
available or estimable quantities, in order to eventually obtain
the estimator (12), or at least a well-approximated version
thereof. To this end, assume T is sufficiently large such
that |Eij | � |Rij | for all possible (i, j). With this, using
log(|z|) = <{log(z)} which holds for any z ∈ C, and the
first-order Taylor expansion approximation log(1 + z) ≈ z
(which holds for all z ∈ C satisfying |z| � 1), the equivalent
“measurement noise” εijk` reads

εijk` = log (|1 + Eij/Rij |)− log (|1 + Ek`/Rk`|)
≈<{Eij/Rij−Ek`/Rk`} ,∀i, j, k, `∈{1, . . . ,M}. (13)

Clearly, since “R is unbiased, it follows that

E [Eij ] = 0 ⇒ E [εijk`] ≈ 0, ∀i, j, k, ` ∈ {1, . . . ,M}, (14)

so that ηε = E [ε] ≈ 0(kψ+1). As for the covariance matrix of
ε, which now reads Λε ≈ E

[
εεT

]
, based on the assumption

(2) that {r[t]} are all circular CN, and in particular using
Isserlis’ theorem [12], we show in Appendix A that the
elements of Λε are (approximately) given by

E [εi1j1k1`1 · εi2j2k2`2 ] ≈
1

T
· 0.5·

<
ß
Ri1j2R

∗
j1i2

Ri1j1Ri2j2
−
Ri1`2R

∗
j1k2

Ri1j1Rk2`2
−
Rk1j2R

∗
`1i2

Rk1`1Ri2j2
+
Rk1`2R

∗
`1k2

Rk1`1Rk2`2

+
Ri1i2R

∗
j1j2

Ri1j1R
∗
i2j2

−
Ri1k2R

∗
j1`2

Ri1j1R
∗
k2`2

−
Rk1i2R

∗
`1j2

Rk1`1R
∗
i2j2

+
Rk1k2R

∗
`1`2

Rk1`1R
∗
k2`2

,́

(15)

so that Λε is (approximately) a function of R only.
Of course, the true R is in fact unknown. However, since“R is the MLE of R, by virtue of the invariance property of

the MLE [13], it follows that “Λε, a matrix whose elements
are defined as in (15), but with {R̂ij} replacing {Rij}, is
(approximately) the MLE of Λε. Therefore, we propose the
following “ML-based OWLS” estimate of the sensor gainŝ̃

ψML-OWLS ,
(
HT“Λ−1ε H)−1HT“Λ−1ε µ (16)

⇒ “ψML-OWLS , exp

Å̂̃
ψML-OWLS

ã
. (17)

Note that for a sufficiently large T : “ψML-OWLS ≈ “ψOWLS
by virtue of the continuous mapping theorem [14] and the
consistency of the MLE ([15]) “Λε.

Furthermore, notice that since the ML estimation errors
{Eij} are asymptotically (non-circular) jointly CN, according
to (13), the transformed estimation errors {εijk`} are approx-
imately asymptotically jointly Normal. Thus, it follows that̂̃
ψOWLS is (approximately) also the MLE of ‹ψ based on µ.
Once again, using the invariance property of the MLE, it
follows that “ψOWLS is the MLE of ψ based on µ. Therefore,
we conclude that “ψML-OWLS is asymptotically the MLE of ψ
based on µ (but not based on the sufficient statistic “R, and
thus not on the raw data {r[t]}Tt=1, since µ is not an invertible
function of “R).

B. Approximated OWLS Estimation of the Sensor Phases
Following Paulraj and Kailath [1], from (3) we have

∠Rij − ∠Rk` = φi − φj − φk + φ`, ∀i− j = k − `. (18)

Based on the same logic presented in the previous subsection,
taking all the nonredundant relations from the super diagonals
(excepting the singleton R1M ), we get a total of kφ ,∑M−1
m=2 m(m− 1)/2 equations of the form (18) (the diagonal

is excluded since it is real-valued and yields trivial equations in
(18)). Collecting all such kφ elements {νijk` , ∠R̂ij−∠R̂k`}
into the vector ν ∈ R(kφ+2)×1 (and adding the required
reference equations3), we get the LS estimate

ν ≈ Gφ ⇒ φ̂LS ,
Ä
GTG

ä−1
GTν, (19)

where G ∈ R(kφ+2)×M is the coefficients matrix (consisting
only of 0s, ±1s and −2s) as prescribed by (18) for the different
possible values of {i, j, k, `} (see [1] or [10] for the explicit
description of G).

Fortunately, since ∠z = ={log(z)} for any z ∈ C, writing
(18) in terms of {R̂ij} according to (7) yields

νijk` = ∠R̂ij − ∠R̂k` = =
ß
log

Å
Rij + Eij
Rk` + Ek`

ã™
(20)

= =
ß
log

Å
Rij
Rk`

ã™
︸ ︷︷ ︸

∠Rij−∠Rk`

+=
ß
log

Å
1 + Eij/Rij
1 + Ek`/Rk`

ã™
(21)

, φi − φj − φk + φ` + εijk`, ∀i− j = k − `, (22)

3For the exact details the reader is referred to [1] or [10].
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Fig. 1: MSE vs. SNR for T = 500. Empirical results were obtained by averaging 104 independent trials. Evidently, the improvement w.r.t.
the “naı̈ve” equally-weighted LS approach can reach more than an order of magnitude in the high SNR regime.

Fig. 2: MSE vs. T for SNR= 10[dB]. Empirical results were obtained by averaging 104 independent trials. As seen, the achieved gain by
the proposed estimates w.r.t. ordinary LS is substantial even in the large sample size regime.

so that we now have the exact relation

ν = Gφ+ ε ∈ R(kφ+2)×1, (23)

where ε is the transformed “measurement noise” in the result-
ing system of linear equations (23), collecting {εijk`} with the
respective corresponding indices. Notice that if we define

ξijk` , log

Å
1 + Eij/Rij
1 + Ek`/Rk`

ã
, ∀i− j = k − `, (24)

then we also have ξijk` = εijk` +  · εijk`. Hence, based on
the arguments stated before (13), we have

εijk`≈={Eij/Rij−Ek`/Rk`} ,∀i, j, k, `∈{1, . . . ,M}. (25)

From (25), it follows immediately that ηε , E [ε] ≈ 0(kφ+2).
Additionally, as shown in Appendix A, using the expressions
already obtained for the previous computation of Λε, we easily
obtain the elements of Λε , E

î
(ε− ηε) (ε− ηε)

T
ó
, which

now reads Λε ≈ E
[
εεT

]
, given (approximately) by

E [εi1j1k1`1 · εi2j2k2`2 ] ≈
1

T
· 0.5·

<
ß
Ri1j2R

∗
j1i2

Ri1j1Ri2j2
−
Ri1`2R

∗
j1k2

Ri1j1Rk2`2
−
Rk1j2R

∗
`1i2

Rk1`1Ri2j2
+
Rk1`2R

∗
`1k2

Rk1`1Rk2`2

−
Ri1i2R

∗
j1j2

Ri1j1R
∗
i2j2

+
Ri1k2R

∗
j1`2

Ri1j1R
∗
k2`2

+
Rk1i2R

∗
`1j2

Rk1`1R
∗
i2j2

−
Rk1k2R

∗
`1`2

Rk1`1R
∗
k2`2

,́

(26)

so that Λε is also (approximately) a function of R only.
Recalling (again) that R is unknown, we propose the

following ML-based OWLS estimate of the sensor phases

φ̂ML-OWLS ,
(
GT“Λ−1ε G)−1GT“Λ−1ε ν, (27)

where “Λε is a matrix whose elements are defined as in (26),
but with {R̂ij} replacing {Rij}. Based on the same arguments

presented in the end of the preceding subsection, we conclude
that for a sufficiently large T , the proposed estimator (27)
approximately coincides with the MLE of φ based on ν (but
not based on “R, and accordingly not on the raw data {r[t]}Tt=1,
since ν is not an invertible function of “R).

IV. SIMULATION RESULTS

We consider model (1) in a scenario which consists of
a M = 5 elements array with half wavelength inter-
element spacing (i.e., γ = λ/2), and D = 3 equal power,
zero-mean unit variance sources arriving at angles θ =
−[35◦ 63◦ 25◦]T. The sensors’ gains and phases were set to
ψ = [1 1.3 2 1.7 2.1]T and φ = [0◦ 0◦ 5◦ 10◦ − 7◦]T, resp.,
where w.l.o.g. we assume ψ1, φ1 and φ2 are known (and serve
as references). Empirical results were obtained by averaging
104 independent trials.

Fig. 1 presents the MSEs obtained by “ψML-OWLS and
φ̂ML-OWLS vs. the SNR, where T = 500 is fixed. For com-
parison, we also show the MSEs obtained by Paulraj and
Kailath’s LS estimators, (6) and (19), and the Cramér-Rao
Lower Bound (CRLB) on the corresponding MSEs obtained in
any unbiased joint estimation of all the unknown parameters.
Similarly, Fig. 2 presents the same quantities, however now
vs. the sample size T , where the SNR is fixed at 10[dB].
As seen, the proposed estimates exhibit nearly optimal perfor-
mance, approximately attaining the CRLB, i.e., the asymptotic
performance of the MLE based on the raw data. Notice
that although this (near) optimality is theoretically obtained
only asymptotically, in practice, this asymptotic state may be
reached within (only) a few dozens of samples. Moreover, the
improvement w.r.t. ordinary LS estimation can reach more than
an order of magnitude in the high SNR regime.
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V. CONCLUSION AND FUTURE WORK

In the context of array processing of narrowband signals,
we presented an approximately optimal blind calibration tech-
nique. Based on the Toeplitz structure of the covariance
matrix of the perfectly calibrated array, and using a first-order
approximation for the computation of the transformed “mea-
surement noise” covariance matrix, we derived the ML-OWLS
estimators of the sensors’ gains and phases. These estimators
were shown empirically to be nearly optimal asymptotically,
approximately attaining the CRLB.

We note that “R is consistent even when the vector samples
{r[t]}Tt=1 are not CN, and by virtue of the central limit
theorem [16], all elements of “R are jointly CN, asymptotically.
Therefore, the derived estimators (16) and (27) are still the
approximate BLUEs of ψ and φ, resp., based on µ and ν
(but not necessarily based on “R). However, it can be shown
that the resulting “measurements noise” vectors ε and ε are
correlated, which means that the proposed estimation scheme
may be further improved, exploiting this statistical coupling.
Moreover, with certain modifications in their definitions, µ and
ν may serve together as an invertible function of the sufficient
statistic “R. Accordingly, the resulting estimators, which are
modified version of (16) and (27), are approximately the MLEs
w.r.t. “R, hence they are also approximately the MLEs based
on the raw data {r[t]}Tt=1. On top of that, considering the
above, these modified estimators also retain their asymptotic
optimality, w.r.t. the data “R, for a more general model, and are
applicable for various types of signal models. An elaborated
discussion on this issue (and more) will be presented in a
future paper in which we consider an extended, more general
model.

APPENDIX A
COMPUTATION OF THE NOISE COVARIANCE MATRICES

As seen from (13) and (26), εijk` and εijk` are the real
and imaginary parts, resp., of the same complex number (24),
ξijk`. Thus, define

zijk` , Eij/Rij − Ek`/Rk`, ∀i, j, k, ` ∈ {1, . . . ,M}, (28)

and for simplicity denote z1 := zi1j1k1`1 and z2 := zi2j2k2`2 .
Starting with Λε, it may be easily shown that

E [<{z1}<{z2}] = 0.5 · < {E [z1z
∗
2 ] + E [z1z2]} , (29)

so we may concentrate on the computation of E [z1z
∗
2 ] and

E [z1z2]. It follows from (28) that both of these expecta-
tions are easily computed given the covariances and pseudo-
covariances of {Eij}. Thus,

E [EijE∗k`] = E
î
R̂ijR̂

∗
k`

ó
−RijR∗k`

=
1

T 2

T∑
t1,t2=1

E
[
ri[t1]r

∗
j [t1]r

∗
k[t2]r`[t2]

]
−RijR∗k`. (30)

Using the fact the {r[t]}Tt=1 are all i.i.d. circular CN, applying
Isserlis’ theorem [12] gives

E
[
ri[t1]r

∗
j [t1]r

∗
k[t2]r`[t2]

]
=E

[
ri[t1]r

∗
j [t1]

]︸ ︷︷ ︸
=Rij

E [r∗k[t2]r`[t2]]︸ ︷︷ ︸
=R∗

k`

+

E [ri[t1]r
∗
k[t2]]︸ ︷︷ ︸

=δt1t2 ·Rik

E
[
r∗j [t1]r`[t2]

]︸ ︷︷ ︸
=δt1t2 ·R

∗
j`

+E [ri[t1]r`[t2]]︸ ︷︷ ︸
=0 (circularity)

E
[
r∗j [t1]r

∗
k[t2]

]︸ ︷︷ ︸
=0 (circularity)

,

(31)

where δt1t2 denotes the Kronecker delta of t1, t2 ∈ Z.
Substituting (31) into (30), and repeating for E [EijEk`] with
exactly the same technique, we obtain after simplification

E [EijE∗k`] =
1

T
RikR

∗
j`, E [EijEk`] =

1

T
Ri`R

∗
jk, (32)

for all i, j, k, ` ∈ {1, . . . ,M}. Now, substituting (28) in
E [z1z

∗
2 ] and E [z1z2], and using linearity, with the covariances

and pseudo-covariances (32) we obtain (15). Similarly, since

E [={z1}={z2}] = 0.5 · < {E [z1z
∗
2 ]− E [z1z2]} , (33)

(26) is given by exactly the same expressions already obtained.
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