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Abstract—Features extracted from respiratory activity
signals have been shown to carry information about
mental states such as anxiety and mental stress. Such
findings, however, are based on studies conducted mostly
in controlled laboratory environments with artificially-
induced psychological responses. While this assures that
high quality data are collected, the amount of data is limited
and the transferability of the findings to more ecologically-
appropriate natural settings (i.e., “in-the-wild”) remains
unknown. In this paper, we propose new non-linear com-
plexity measures computed from four different respiration
activity time series (i.e., inter-breath interval, inhale-to-
exhale ratio, inhale/exhale amplitude envelope, and inter-
breath difference) and show their discriminatory power for
anxiety and stress monitoring in the workplace. The new
features are tested on a dataset collected from 200 hospital
workers (nurses and staff) during their normal work shifts.
The proposed features are shown to be complementary to
conventional measures of breathing rate and depth.

I. INTRODUCTION

Advances in battery and sensing technologies for
wearable devices have enabled long-term, unobtrusive
and continuous acquisition of biomedical data. Respi-
ration is an easy modality to be monitored by smart-
garment based devices such as smart-shirts. Typically,
breathing rate based measures have been used as cor-
relates of mental states such as anxiety, amusement,
and boredom [1]. When combined with cardiovascular
activity monitoring, it has been shown that improved
stress and anxiety measurement can be obtained [2], [3].

Respiration can be considered as a mixture of two
processes of metabolic and behavioral breathing orig-
inating from different parts of the brain [4], with the
latter being affected by internal and external stimuli.
Usually, these changes are observable in two different
aspects of breathing, namely (i) respiration or breathing
rate and (ii) tidal volume or breathing depth. Mental
stress has been shown to increase both respiration rate
and breathing depth [5]. Similarly, anticipatory anxiety
is associated with an increase in respiration rate [6].
This respiratory variability has been quantified with
simple statistical functionals, such as mean, coefficient
of variation and auto-correlation [7]. Notwithstanding,
the inter-breath interval series (e.g., as shown in Fig. 1)
exhibits a complex fractal behavior similar to inter-beat

interval (RR) series of cardiac activity and shows similar
degradation with aging [8]. These complex behaviors in
the time series can be better quantified by using non-
linear measures, as previously shown for cardiac activity
[9]. One such measure, called the permutation entropy
(PE), has shown to also be robust to artifacts, as it
deals with structures and shapes of the time series, and
not on magnitude values themselves [10]. The sample
entropy (SampEn) measure, in turn, provides a simple
way of measuring the complexity of a time series and
has been extensively used in physiology monitoring [11].
Fractal exponents can be further quantified by using
the correlation dimension [12]. Moreover, respiration
has been known to be a strong modulator of heart
rate dynamics [13], with inhale-to-exhale duration ratios
and guided breathing leading to increased relaxation,
stress reduction, and mindfulness [14]. Breathing has
also shown to modulate cardiac activity in a way that
alters the heart rate variability and reduces anxiety [15].

The majority of existing studies have manipulated
stress and anxiety in laboratory settings, thus it is unclear
how such measures behave in highly ecological settings
of natural human behavior (such as in a workplace)
where movement artifacts could be highly detrimental.
In this work, we propose several new breathing and
breathing-cardiac coupling measures for “in-the-wild"
assessment of stress and anxiety. Specifically, we pro-
pose to extract complexity measures from four time
series: (1) inter-breath interval, (2) inhale-exhale ratio,
(3) inhale/exhale amplitude envelopes, and (4) absolute
first difference of the inter-breath interval. The latter
is inspired by work in cardiac series analysis, which
showed difference heart rate series as exhibiting inter-
esting non-linear properties [16]. Next, we propose to
quantify cardio-respiratory interaction using a new mod-
ulation coupling parameter. We show that the proposed
features rank highly for the task at hand and provide
complementary information to conventional features.

The remainder of this paper is organized as follows.
Section II covers the details of data collection, bench-
mark and proposed features, and the experimental setup.
Section III presents the experimental results and a
discussion. Lastly, Section IV provides the conclusions.
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Figure 1. Respiration signal for 5 complete breaths

II. MATERIALS AND METHODS

A. Participants

Data were collected from 200 participants (66 male,
age 38.6± 9.8 years) from a pool of employees (nurses
and staff) of a large urban hospital in California. Two-
thirds of the participants were nurses while one-third
were hospital staff. Data were collected for a duration
of 10 weeks. Participants consented to participate in
the study, which received ethical board approval from
the affiliated institutions. Participants carried out their
work day as usual but were asked to fill a brief phone-
based daily survey that included information on levels
of anxiety and stress on a 5-point scale.

B. Wearable Sensors

Participants were outfitted with multiple wearable
sensors to collect a variety of biometric data, including
audio features, heart rate, respiratory rate, and sleep qual-
ity. A custom audiometric badge was used, as detailed
in [17], along with a Fitbit Charge 2 and an OMsignal
smartshirt. In this paper, only the respiration information
measured by the OMsignal smartshirt is used, along
with the inter-beat heart rate series, also provided by the
garment. The garment provides information about inhale
and exhale peaks and the time when these peaks occur.

C. Feature Extraction - Conventional Features

A complete list of conventional and proposed mea-
sures can be found in the Table I. Further details about
the features are given in the subsections below. Here, the
features provided by the OMSignal garment are used as
benchmarks and are provided every 5-minute interval.
These correspond to the mean and standard deviation of
the instantaneous breathing rate (fR) and the breathing
depth (bD). These features have been shown in the
literature to correlate with stress [6] and anxiety [5].

D. Feature Extraction - Proposed Features

Features are extracted from four different time series.
These are listed below for each series.

Table I
DIFFERENT GROUPS OF BREATHING FEATURES EXTRACTED

Feature Groups Features

Benchmark
mean and std of fR,
mean and std of bD

Inhale-to-exhale ratio
mean, std and CoV,
SampEn and PE,
dcor, modmn, modstd

Inter-breath interval
mean, std and CoV,
dcor, SampEn, and
PE for ibri and d_ibri

Amplitude envelope
mean, std and CoV for
InhAm and ExhAm

1) Inhale and Exhale Amplitude Envelope Series:
Instead of considering the total breathing depth, which
could be sensitive to movement artifacts, we propose to
extract features from the inhale and exhale amplitude
envelopes (InhAm and ExhAm, respectively) instead.
The inhale amplitude envelope can be seen in Fig. 1.
From the two envelopes, we calculate the mean, standard
deviation (std) and coefficient of variation (CoV).

2) Inhale-to-Exhale Ratio Series: The inhale-to-
exhale ratio series, ier(n), is created from the respiration
signal, where n represents a given respiration cycle, as:

ier(n) =
inhdur(n)

exhdur(n)
, (1)

where inhdur(n) and exhdur(n) are the duration of
inhale and exhale times, as shown in Fig. 1. To quantify
the properties of this series and how it modulates heart
rate variability, the following features are proposed:
• Statistical features: The mean, standard deviation

and coefficient of variation of ier;
• Non-linear features: Permutation entropy (PE),

Sample Entropy (SampEn), and correlation dimen-
sion (dcor) are calculated for ier. The permutation
entropy quantifies the occurrence of motifs in the
series. Motifs are defined as recurring patterns in
the time series with a degree η and lag λ. Based on
the rank ordering of the motif pattern we assign it a
specific symbol j. Representative motifs of degree
3 and lag 1 are shown in Fig. 2. The permutation
entropy is then calculated as:

PE = −
η!∑
j

p(j) · log(p(j)), (2)

where p(j) is the relative frequency of the motif
pattern represented by j.
Sample entropy, in turn, is the negative natural log-
arithm of an estimate of the conditional probability
that if two sets of vectors (Xm(i) and Xm(j)) of
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Figure 2. All motifs of degree η = 3 appearing in a time series

length m have a distance < r, then two sets of
vectors (Xm+1(i) and Xm+1(j)) of length m + 1
also have a distance < r, based on some distance
metric dm(X,Y ). It is formally defined as:

SampEn = − log
Nm+1

Nm
, (3)

where Nm is number of vector pairs with
dm(Xm(i), Xm(j)) < r and Nm+1 is number of
vector pairs with dm(Xm+1(i), Xm+1(j)) < r.
Next, the correlation dimension (dcor) is proposed
to measure the fractal dimension of the series. It is
defined using the correlation integral given by:

C(ε) = lim
N→∞

∞∑
i,j=1

H(ε− |xi − xj |), (4)

where H is the Heaviside step function. As such,
the correlation dimension is defined as:

dcor = lim
ε,ε′→0+

ln[ C(ε)

C(ε′ )
]

ln( ε
ε′
)
. (5)

• Cardiac-respiration coupling: To quantify the inter-
action between the inter-beat interval (RR) cardiac
series and the ier, two features are proposed:

modmn(n) =
mean(ier)
mean(rr)

, (6)

modstd(n) =
std(ier)
std(rr)

, (7)

where modmn and modstd represent how the
breathing modulates the means and the standard
deviation of the RR series, respectively.

3) Inter-breath Interval Series and Difference series:
From the inter-breath interval duration series (ibri) and
the magnitude difference of the ibri series (referred as
d_ibri), the following features are computed:

1) Statistical features: The mean, standard deviation
and coefficient of variation.

2) Non-linear features: PE, SampEn and dcor.
Overall, a total of 25 features are computed, corre-

sponding to 4 conventional features and the 21 proposed

features. These 25 features were extracted over 5-minute
long windows and are further aggregated over an entire
day using the following statistical functionals: mean,
standard deviation, coefficient of variation, median, min,
max, 1st and 3rd quartile, skewness and kurtosis. After
computing these 10 functionals, a total of 250 features
are available for analysis (40 standard and 210 proposed
features).

E. Feature Ranking, Classification and Figures-of-Merit

Training classifiers with a large feature set may lead to
overfitting and many features may be highly correlated.
As such, recursive feature elimination was performed
with a step size of 10 using the Extra Trees Classifier.
The top 40 features are then selected for classification at
each cross validation step. Feature selection and classi-
fication are performed on benchmark features alone, the
proposed features alone, and a combined set to explore
the complementarity of the two sets.

A five fold cross-validation setup was performed
with feature selection taking place for the top 40 fea-
tures at each fold. Forty features were selected as this
corresponds to the dimension of the benchmark fea-
ture set. Classification was then performed on subject-
wise binarized high/low stress and anxiety levels. This
subject-wise binarization helps reduce data unbalance
and remove subject bais in the ratings. A support vector
machine (SVM) classifier with an RBF kernel and a ’bal-
anced’ setting is explored, which uses the target value
to automatically adjust weights inversely proportional to
class frequencies in the input data [18]. As the data
is unbalanced, F1-score, balanced accuracy (BACC),
sensitivity (Sens), and specificity (Spec) are used as
classifier performance figures-of-merit.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Classification results for stress and anxiety are shown
in Tables II and III, respectively. As can be seen, the
proposed breathing features outperform the benchmark
ones across most figures-of-merit used, with the only
exception being sensitivity for anxiety prediction. For
example, for stress, the proposed features resulted in
a 4.56 % BACC improvement, and a 2.99% increase
for anxiety monitoring. Moreover, feature fusion showed
further improvements for anxiety prediction (4.03%).
These findings suggest that the proposed features may
be more relevant for “in-the-wild” assessment of mental
states and to provide complementary information to
widely used benchmark breathing measures.

Moreover, to further explore the importance of the
proposed features within the combined feature pool, an
in-depth analysis on the features ranked highly across
all five cross-validation trials was performed. It could be
seen that for stress prediction, 15 of the top 18 consistent
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Table II
PERFORMANCE COMPARISON FOR ANXIETY PREDICTION

Features Anxiety
BACC F1-score Sens Spec

Benchmark 0.5836 0.5228 0.6264 0.5408
Proposed 0.6135 0.5329 0.5756 0.6514
Fusion 0.6239 0.5497 0.6120 0.6359

Table III
PERFORMANCE COMPARISON FOR STRESS PREDICTION

Features Stress
BACC F1-score Sens Spec

Benchmark 0.5549 0.5360 0.5571 0.5528
Proposed 0.6005 0.5774 0.5891 0.6122
Fusion 0.5955 0.5696 0.5770 0.6141

features were from the new proposed feature set with
eight features extracted from the inhale-to-exhale ratio
series, six from the inter-breath interval series and one
from the inhale/exhale amplitude envelopes. Moreover,
both cardiac-respiration coupling features and the inter-
breath interval difference series features were present.
One benchmark feature, mean of bD, was not among
the top feature set.

For anxiety, in turn, 10 of the top 14 consistent
features corresponded to newly proposed ones, with six
features extracted from the inhale-exhale ratio series, one
feature from the inter-breath interval series and three
from the inhale/exhale amplitude envelopes. Moreover,
both cardiac-respiration coupling features were present
As can be seen, the proposed features convey better
discriminatory information for the task at hand.

IV. CONCLUSION

In this paper, we proposed several innovations for
“in-the-wild” anxiety and stress measurement using data
from wearable devices used in a hospital workplace
setting. More specifically, we proposed several new non-
linear respiration complexity and cardio-respiratory cou-
pling features. Overall, the proposed features are found
to be complementary to basic breathing rate measures
and to improve anxiety and stress prediction.
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