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Abstract—In this paper, we consider the problem of estimating
channel parameters in the presence of impulsive noise (IN).
To that end, two novel maximum-likelihood based IN support
detection techniques are proposed for the cases where the IN is
modeled to be a deterministic quantity or a random one. For
the deterministic case, an exact closed-form expression for the
distribution of the joint likelihood statistic is provided whereas, in
the random case, an exact expression of its asymptotic distribution
is derived. In both cases, the computed distribution of the
likelihood statistic enables the joint estimation of the channel
parameters and the detection of the IN support with guarantees
on the false alarm probability for the samples that are estimated
to be in the IN support set. The goodness of the proposed
expressions is validated via numerical simulations.

Index Terms—Impulsive noise, support detection, maximum-
likelihood estimation and detection.

I. INTRODUCTION

In the time domain, impulsive noise (IN) is characterized by
its random occurrence and by having a very brief duration and,
potentially, high power [1]. IN is present in many systems (for
example audio appliances or power line communications) and
it can significantly hinder their performance, unless its effects
are mitigated via, e.g., signal processing techniques. Focusing
on discrete-time (sampled) systems, one of the main problems
when designing digital signal processing schemes to overcome
the effects of IN is to accurately identify which signal samples
are obliterated by it.

One of the most straightforward approaches to identify IN-
corrupted samples is to define a threshold and assume that
all signal samples whose power is above the threshold are
contaminated by IN. The case where the threshold is fixed
is studied in [2]–[4] and more refined schemes that adapt
their reference threshold value according to the change in
the IN power are proposed in [5]–[7]. More recently, IN
support estimation algorithms that exploit the time domain
sparsity characteristic of IN based on compressed sensing
(CS) and sparse Bayesian learning methods are proposed
in [8]–[10]. Based on this idea, a further enhancement in
IN support estimation is proposed in [11], where CS-based

The work of X. Mestre is supported by Generalitat de Catalunya under
grant 2017 SGR 1479 and by the Spanish Government under grant RTI2018-
099722-B-I00. The work of M. Payaró is supported by Generalitat de
Catalunya under grant 2019 SGR 891.

support estimation is used first as a coarse estimation, which
is later refined in a second round by exploiting a priori
information on the IN samples distribution. To enhance the
precision in IN support detection that can be achieved by CS-
based schemes, a basis pursuit (BP) algorithm is proposed
in [12], [13]. Some other algorithms, which require a priori
information on the sparsity level of the signal and are based on
subspace pursuit and compressive sampling matching pursuit
(CoSaMP), are proposed in [14], [15]. In situations where it
is not possible to have this information before hand (blind
signal recovery), a greedy algorithm called sparsity adaptive
matching pursuit (SAMP) has been proposed in [16]. The
performance of SAMP is further enhanced by the priori-aided
SAMP (PA-SAMP) algorithm proposed in [17]. Moreover, the
recent work in [18] proposes an improved version of CS-based
schemes and greedy algorithms based on OMP and CoSaMP
for accurate IN support detection.

In this paper, we capitalize on the work presented in [19]
where, under the assumption of known IN support, two tech-
niques for channel parameter estimation (impulse response,
background noise power and IN power) were provided for
the cases where the IN is modeled as a deterministic or a
random quantity. We enhance the work in [19] by deriving the
distribution of the two maximum-likelihood (ML) functions,
ζDML for the deterministic case and ζRML for the random
one. These two functions will then be used (i) to detect the IN
support with guarantees on the false alarm probability for the
samples in the IN support set and (ii) to estimate the channel
parameters, which depend on the detected IN support.

The remainder of the paper is organized as follows. In
section II, we present the system model under study. In
section III, we derive the ML strategy for IN support detection
under the deterministic setting. In section IV, we provide an
asymptotic ML detection approach for the IN support under
the random setting. In section V, we present the numerical
validation of the derived results and conclude the paper.

II. SYSTEM MODEL

Let us consider N uses of a general discrete-time linear
vector channel, whose output in the time domain, y ∈ CN , is
represented by

y =
√
NΘh + i + w. (1)

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE



In (1), the unknown channel impulse reponse (CIR) is denoted
by h ∈ CL, where L represents the length of the CIR;
Θ ∈ CN×L denotes a known transformation matrix containing
the pilots transmitted to estimate the channel (see further
[19], [20]); and i ∈ CN and w ∈ CN are the vectors
containing the time domain samples of IN and background
noise, respectively. The samples of the background noise are
assumed to be i.i.d. additive white Gaussian noise random
variables, [w]j ∼ CN (0, σ2

w), where we used [w]j to denote
the jth sample of vector w. The IN vector i is a sparse vector,
having only Nimp non-zero entries and where Nimp is unknown.
Furthermore, the indexes within the set {1, . . . , N} that are
contaminated by IN are denoted by A =

{
n1, . . . , nNimp

}
such

that Nimp = |A|. The signal to noise ratio (SNR) of the system
is defined as the ratio σ2

s/σ
2
w, where σ2

s is the power of the
transmitted signal and the IN to background noise power ratio
(INR) is defined as σ2

i /σ
2
w, where σ2

i is the IN power.
In the following two sections, we consider two different

models for the IN, deterministic and random. In the determin-
istic case, the IN vector i is treated as an unknown, but constant
quantity, that can be seen as the mean of the overall noise term
i + w ∼ CN (i, σ2

wIN ). In the random case, the samples of i
are assumed to be zero mean i.i.d. Gaussian random variables
such that [i]j ∼ CN (0, σ2

i ) if the jth entry of i contains an IN
sample (i.e., j ∈ A) and [i]j = 0 if the entry is IN-free (i.e.,
j /∈ A). In the random case, it will prove useful to define the
overall Gaussian noise term n = i + w ∼ CN (0,Cn).

III. DETERMINISTIC MODEL

Let us assume that N − |A| − L > 0. Then, the negative
logarithm of the deterministic maximum likelihood (DML)
function is

ζDML

(
h, iA, σ

2
w,A

)
=

1

Nσ2
w

∑
n∈A

∣∣∣[y]n −
√
NθHn h− [i]n

∣∣∣2
+

1

Nσ2
w

(
y −
√
NΘh

)H
P⊥A

(
y −
√
NΘh

)
+ log

(
σ2
wπ
)
.

where iA = [i]n∈A, θHn is the n-th row in matrix Θ,
PA =

∑
n∈A unuHn , with [un]j = δn−j (being δn the

Kronecker delta), and P⊥A = IN − PA, with IN being the
identity matrix of dimension N × N . We also define the
N×|A| selection matrix UA as the unique matrix with {0, 1}
entries that satisfies PA = UAUH

A .
Let us denote by ĥA, ı̂A, and σ̂2

w,A the ML estimators of the
CIR, the IN amplitude and the noise power, respectively, where
we made explicit the dependence of these estimators on the
assumed impulse support, A. These estimators can be obtained
by differentiating the cost function ζDML

(
h, iA, σ

2
w,A

)
with

respect to the corresponding variable and equating it to zero,
which yields

ĥA=
1√
N

(
ΘHP⊥AΘ

)−1

ΘHP⊥Ay,

ı̂A = UH
A

(
y −
√
NΘH ĥA

)
, and

σ̂2
w,A =

1

N
yH
(

P⊥A −P⊥AΘ
(
ΘHP⊥AΘ

)−1

ΘHP⊥A

)
y.

We define by ζ(A)
DML the statistic that is obtained by replacing

all these estimators back into the DML cost function, that is

ζ
(A)
DML = ζDML

(
ĥA, ı̂A, σ̂

2
w,A,A

)
= log

(
yHR⊥Ay

)
+ C,

where C denotes a constant independent of the
support A and where we have defined R⊥A =

P⊥A −P⊥AΘ
(
ΘHP⊥AΘ

)−1

ΘHP⊥A.
Our approach for detecting the support of the IN will

follow a greedy procedure that will compare the statistic
ζ

(A)
DML with the statistic ζ(A∪{j})

DML for every j /∈ A. Recalling
that these values are negative log-likelihoods, a value of
ζ

(A∪{j})
DML that is much lower than ζ

(A)
DML will indicate that

the support A ∪ {j} is much more probable than the support
A. Then, our proposed algorithm incorporates the jth sample
into the support A when the difference between negative log-
likelihoods ζ(A)

DML − ζ
(A∪{j})
DML is sufficiently high. Noting that

the function − log(1 − x) is monotonically increasing for
x ∈ (0, 1), this is equivalent to a sufficiently large value of
the statistic [21]:

TA (j) =
yHR⊥Auju

H
j R⊥Ay

yHR⊥AyuHj R⊥Auj
. (2)

Now, the first question that we need to answer is, how do
we choose a threshold value αj so that we decide that the
jth sample is contaminated by IN if TA (j) > αj? Clearly, in
order to best fix this threshold, we should take into account
all the statistics {TA (j) , j /∈ A} and not only the jth statistic
alone. In other words, we should consider the problem as a
multiple hypothesis test.

A. Multiple hypothesis test

Let us consider the multiple hypothesis test composed of
N − |A| binary decisions corresponding to the samples not
included in A. The jth binary test is defined for every j /∈ A
as

H0 (j) : [y −
√
NΘh]j ∼ CN

(
0, σ2

w

)
H1 (j) : [y −

√
NΘh]j ∼ CN

(
[i]j , σ

2
w

)
.

The null hypothesis H0 (j) assumes that the jth sample is
free from IN, whereas the alternative one H1 (j) considers IN
contamination with complex amplitude [i]j . For each binary
test (H0 (j) versus H1(j)) we may construct the generalized
likelihood ratio statistic in (2) and we decide that the alterna-
tive is correct if TA (j) > αj for a given threshold αj . We
will now sketch how the threshold values αj for each j /∈ A
can be selected. For details, see [21].

Conventional binary hypothesis tests select the threshold
value αj in order to have a certain probability of false
alarm, defined as the probability of incorrectly deciding for
H1(j) when the correct hypothesis is H0 (j), namely FAj =
PH0(j) (TA (j) > αj), where PH0(j) (·) is the probability of
a certain event under the hypothesis H0 (j). To fix this
probability, we must investigate the statistical behavior of the
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statistic TA (j) under H0 (j), meaning that yp −
√
NΘh ∼

CN
(
0, σ2

wIN
)
. In [21], we show that

TA (j)

1− TA (j)
∼ χ2

2

χ2
2(N−|A|−L−1)

(3)

=
1

N − |A| − L− 1
F (2, 2 (N − |A| − L− 1)) ,

where F (d1, d2) is the Snedecor F -distribution. We can now
compute the false alarm probability for the jth binary test,
FAj = PH0(j) (TA (j) ≥ αj), in closed form as:

FAj = PH0(j)

(
TA (j)

1− TA (j)
≥ αj

1− αj

)
= (1− αj)N−|A|−L−1

,

where we have used that P (F (2, 2d) ≤ x) = 1−(d/(x+d))d.
Therefore, we can fix the threshold αj that guarantees a cer-

tain false alarm probability FAj as αj = 1−FA1/(N−|A|−L−1)
j .

IV. RANDOM MODEL

A similar greedy algorithm for the detection of IN support
as presented above can also be formulated under a random
Gaussian model for the IN. In this case, the system model
(1) becomes y =

√
NΘh + n with n = i + w ∼ CN (0,Cn)

and the negative logarithm of the random maximum likelihood
(RML) function is

ζRML

(
h, σ2, σ2

w,A
)

=
1

N
log det Cn +

1

N

(
y −
√
NΘh

)H
C−1
n

(
y −
√
NΘh

)
,

where Cn = σ2PA+σ2
wP⊥A and σ2 = σ2

i +σ2
w. By taking the

RML channel estimate (denoted here also ĥA, with a slight
abuse of notation) and inserting it back into the cost function
we obtain [21]

ζRML

(
ĥA, σ

2, σ2
w,A

)
=
|A|
N

log σ2 +

(
1− |A|

N

)
log σ2

w +
1

Nσ2
w

yHP⊥Θy (4)

−
(
σ2

σ2
w

− 1

)
1

N

|A|∑
i=1

yHP⊥ΘUAuA (i) uHA (i) UH
AP⊥Θy

σ2
w + (σ2 − σ2

w)λA (i)
,

where UA is the same as defined in section III and
we have used the eigendecomposition UH

AP⊥ΘUA =∑|A|
i=1 λA (i) uA (i) uHA (i) .
The proposed estimator for the IN support will follow the

same greedy approach as the one for the deterministic case,
based on the difference ζ(A)

RML−ζ
(A∪{j})
RML . The main idea is to

compute ζ(A∪{j})
RML for all j /∈ A. Assuming that the value of

the negative log-likelihood ζ(A∪{j})
RML is sufficiently lower than

the value of ζ(A)
RML, we will have evidence that the model that

incorporates the jth sample into the IN support is more likely.
This will lead us to the conclusion that the jth sample should

be incorporated into the model. Following the dertivations in
[21], ζ(A∪{j})

RML can be expressed as

ζRML

(
ĥA∪{j}, σ

2, σ2
w,A ∪ {j}

)
=
|A|+ 1

N
log σ2 +

(
1− |A|+ 1

N

)
log σ2

w

+
1

Nσ2
w

yHRA (α) y − 1

Nσ2
w

yHRA (α) uju
H
j RA (α) y

α+ uHj RA (α) uj
,

where RA (x) = P⊥Θ−P⊥ΘUA(xI|A|+UH
AP⊥ΘUA)−1UH

AP⊥Θ
and α = σ2

w/(σ
2 − σ2

w). Observe that, according to the
definition of σ2 = σ2

i + σ2
w, one always has σ2 ≥ σ2

w so
that α ∈ (0,∞). Also, observe that we have R⊥A = RA (0).

For the optimization of the cost function ζRML with respect
to the pair

(
σ2, σ2

w

)
we need to take the derivatives and equate

them to zero. Following the derivations in [21] and defining
the quantity

RA∪{j} (x) = RA (x)−
RA (x) uju

H
j RA (x)

x+ uHj RA (x) uj
, (5)

the minimum will be attained at the pair of points:

σ̂2
A∪{j} =

β2
A∪{j}(

βA∪{j} − 1
)

(|A|+ 1)
yHRA∪{j}

(
αA∪{j}

)
×(

IN −RA∪{j}
(
αA∪{j}

))
y

σ̂2
w,A∪{j} =

1(
βA∪{j} − 1

)
(N − |A| − 1)

yHRA∪{j}×(
αA∪{j}

) (
IN − βA∪{j}RA∪{j}

(
αA∪{j}

))
y,

where αA = (βA − 1)
−1 and βA is a solution to the equation

in β:

1

N − |A| − 1
yHRA∪{j} (α)

(
IN − βRA∪{j} (α)

)
y

=
β

|A|+ 1
yHRA∪{j} (α)

(
IN −RA∪{j} (α)

)
y,

if there exists one with βA ≥ 1 or, otherwise, σ̂2
A∪{j} =

σ̂2
w,A∪{j} = 1

N yHP⊥Θy. Note that all these equations can be
formulated in terms of the eigendecomposition of RA (x) by
using the identity in (5).

A. Multiple hypothesis test

Following the same approach as in the deterministic case,
one can now formulate a greedy algorithm for the detection
of the IN support. As before, given a support set A, we
ask ourselves whether there exist other samples outside A
that are contaminated by IN. To solve this, we consider the
multiple hypothesis test composed of N−|A| binary decisions
corresponding to each of the jth samples not included in A.
The jth test is defined for every j /∈ A as

H0 (j) :
(
y −
√
NΘh

)
∼ CN

(
0, σ2PA + σ2

wP⊥A
)

H1 (j) :
(
y −
√
NΘh

)
∼ CN

(
0, σ2PA∪{j} + σ2

wP⊥A∪{j}

)
.
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Note that, as in the case in section III, the null hypothesis
H0 (j) assumes that the jth sample is free from impulsive
noise, whereas the alternative one H1 (j) considers that the
jth sample has larger variance σ2. For each binary test (H0 (j)
versus H1(j)) we decide that the alternative is correct if

ζ
(A)
RML − ζ

(A∪{j})
RML > αj (6)

for a given threshold αj (related to the probability of false
alarm as shown by the end of this section) and where we define
ζ

(A)
RML as the value of the negative log-likelihood function after

replacing all parameters with their RML estimates, namely
ζ

(A)
RML = ζRML(ĥA, σ̂

2
A, σ̂

2
w,A,A).

Therefore, from (6), we need to investigate the statistical
behavior of the test ζ(A)

RML−ζ
(A∪{j})
RML under the null hypothesis.

Given the complex form of the RML estimator and the fact
that it does not accept a closed form expression, it is in general
extremely difficult to characterize the statistical law of ζ(A)

RML.
In order to solve this issue, we will take here an asymptotic
approach and analyze the behavior of this statistic when both
N, |A| → ∞ at the same rate. The main statistical assumptions
that are made for the asymptotic analysis are:

(As1) The noise term is zero mean, circularly symmetric
and Gaussian distributed with covariance C̄n, that is n ∼
CN

(
0, C̄n

)
.

(As2) Both N and |A| converge to infinity at the same
rate: 0 < lim infN |A| /N ≤ lim supN |A| /N < 1.

(As3) The eigenvalues of the matrix ΘHΘ are contained
in a compact interval of the positive real axis for all N , that is
0 < infN ΘHΘ < supN ΘHΘ < ∞. Furthermore, if PA is
the N ×N selection matrix corresponding to the set A ⊂ [N ]
we have infN ΘHPAΘ > 0 and infN ΘHP⊥AΘ > 0.

(As4) The norm of the rows of Θ decays uniformly to zero
as O

(
N−1

)
or faster, that is supN maxj=1,...,N N

∥∥uHj Θ
∥∥ <

∞.
(As5) It holds that

lim sup
N

(
1

N
tr
(
C̄n

)
− 1

|A|
tr
(
C̄nPA

))
< 0.

If ĥA denotes the RML channel estimator when the support
A is assumed and denoting as h̄ the true channel impulse
response, under (As1)− (As3) we have

ĥA = h̄+
1√
N

(
ΘHC̃−1

n,AΘ
)−1

ΘHC̃−1
n,An + op

(
1√
N

)
,

(7)
with C̃n,A = σ̃2

APA + σ̃2
w,AP⊥A, σ̃2

A = tr
(
PAC̄n

)
/ |A|,

and σ̃2
w,A = tr

(
P⊥AC̄n

)
/(N − |A|). This result can be

used to establish the following proposition, which provides
an asymptotic description of the statistic ζ(A)

RML − ζ
(A∪{j})
RML .

Proposition 1: Under (As1)− (As5), we have

ζ
(A)
RML − ζ

(A∪{j})
RML =

1

N
log

(
σ̃2
w,A

σ̃2
A

)

+
1

N

[
C̄n

]
jj

(
σ̃2
A − σ̃2

w,A

σ̃2
w,Aσ̃

2
A

)

+
1

N
nHQ⊥AΨA (j)Q⊥An + op

(
1

N

)
where we have defined

Q⊥A = C̃−1
n,A − C̃−1

n,AΘ
(
ΘHC̃−1

n,AΘ
)−1

ΘHC̃−1
n,A,

ΨA (j) =

[
C̄n

]
jj
− σ̃2
A

|A|
PA +

σ̃2
w,A −

[
C̄n

]
jj

N − |A|
P⊥A

+
(
σ̃2
A − σ̃2

w,A
) σ̃2

w,A

σ̃2
A

uju
T
j .

Proof: The derivations can be found in [21].
The above proposition provides a mean to fix the threshold

levels αj , j /∈ A, to guarantee a certain asymptotic false alarm
probability for each binary hypothesis test. To ensure that, in
[21], it is shown that under the null hypothesis H0 (j) we
have y ∼ CN (

√
NΘh, σ2PA + σ2

wP⊥A), which means that
σ̃2
A = σ2, σ̃2

w,A =
[
C̄n

]
jj

= σ2
w and

ζ
(A)
RML − ζ

(A∪{j})
RML =

1

N
log

(
σ2
w

σ2

)
+

1

N

(
1− σ2

w

σ2

)
− 1

N

(
1− σ2

w

σ2

)[
nHPAn

σ2 |A|
−

nHuju
T
j n

σ2
w

]
+ op

(
1

N

)
.

Now, clearly uTj n ∼ CN
(
0, σ2

w

)
and UH

An ∼ CN
(
0, σ2I|A|

)
and these two random variables are independent. Thus, it
follows that

nHPAn

σ2 |A|
−

nHuju
T
j n

σ2
w

∼ 1

2

(
1

|A|
χ2

2|A| − χ
2
2

)
,

where χ2
2 and χ2

2|A| are two independent Chi-Square variables
with 2 and 2 |A| degrees of freedom respectively. Let us write
χ = 1

|A|χ
2
2|A| − χ

2
2. The cumulative density function of this

random variable is well known to be [22], [23]:

Fχ(y) = P (χ ≤ y) =


(
|A|
|A|+1

)|A|
e

y
2 y < 0,

1− e−
y|A|

2

|A|+1

∑|A|−1
i=0 g y ≥ 0,

(8)

with g =
∑i
`=0

1
(i−l)!

(
|A|
|A|+1

)|A|−1−i (
y|A|

2

)i−`
.

In order to achieve a certain false alarm probability we
should choose αj such that FAj = PH0(j)

(
ζ

(A)
RML−ζ

(A∪{j})
RML ≥

αj
)
. This probability can be asymptotically approximated by

FAj=P
(
χ ≤

(
2σ2

σ2 − σ2
w

)
log

(
σ2
w

σ2

)
+2−Nαj

(
2σ2

σ2 − σ2
w

))
and, therefore, we should fix αj such that

αj =
1

N
log

(
σ2
w

σ2

)
+
σ2 − σ2

w

2Nσ2

(
2− F−1

χ (FAj)
)
,

where F−1
χ (p) is the functional inverse of Fχ(y).
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Fig. 1. (a,b,c) Histogram of the statistic versus true/asymptotic density for
different values of N , Nimp. (d) Achieved false alarm rate versus the pre-
defined target FAj ∈ [10−2, 10−1].

V. NUMERICAL VALIDATION AND CONCLUSION

In this section, we numerically validate the theoretical
results derived above by evaluating the accuracy of the two
statistics derived under the deterministic and the random
models. Then, we evaluate the validity of the multi-hypothesis
tests for the false alarm probability in the RML case only,
since the result we obtained in this case in Proposition 1 is
asymptotic (thus, an approximation). For the DML case, we
do not perform this evaluation as the statistic derived for (2)
is exact. Finally, for the sake of space, we do not provide
performance results of the channel parameter estimation (CIR,
noise covariances), as these results are available in [19].

We consider here a scenario with a variable number of
impulses, where the SNR is fixed to 10 dB and the INR to
20 dB. The CIR is randomly selected with an exponentially
decaying power delay profile of duration equal to 20 samples,
and the receiver assumed a total channel length of L = 30
samples. For each scenario, a total of 100 realizations of the
input signal is generated, and for each realization we compute
the N −Nimp statistics corresponding to (2) and (6) for all j
outside the support of the IN. The resulting values are then
conveniently transformed and compared to the two densities
in (3) –exact DML– and (8) –asymptotic RML– respectively.

In Fig.1(a,b,c) we represent the histograms and ex-
act/asymptotic probability density functions corresponding to
the DML and RML statistics for different values of N and
Nimp. Observe that there is a perfect match in the DML case
and that a higher accuracy is observed for large values N ,
Nimp in the RML case, as expected. In Fig.1(d), for the RML
case, we represent the achieved false alarm rate versus the FAj
target that ranges from 10−2 to 10−1. As it can be seen, the
achieved performance is very close to the target, especially as
N and Nimp become larger.
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