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Abstract—The concept of Dynamic Spectrum Access (DSA)
with Cognitive Radio (CR) as a key enabler is considered as a
promising solution to alleviate the inefficient use of the radio
spectrum. Relying on the presumed knowledge of the spectrum
occupancy from sensing, geo-location databases or prediction,
DSA allows opportunistic users to share spectrum bands in a
non-interfering manner when the bands are not in use by their
respective incumbent owners. Several literatures have presented
prediction algorithms in order to get meaningful data about
future spectrum usage; however, most of them only exploit the
spectrum data in time, space and/or frequency dimension(s)
to provide a short term, i.e., single next step, prediction. In
this work, we propose a novel approach with Convolutional
Long Short-Term Memory (ConvLSTM) Deep Learning Neural
Network for a long-term temporal prediction that is trained
to learn joint spatial-spectral-temporal dependencies observed
in spectrum usage. Real environment measurement data from
Electrosense are used to evaluate the prediction accuracy of the
proposed network for increasing future time steps and different
spectrum channels. Prediction result for the next 180 minutes
for UHF bands of 450-520 MHz is presented for a 4 km2

area in Spain indicating the prominent and stable prediction
performance of ConvLSTM network.

Index Terms—ConvLSTM Neural Network, Deep Learning
Network, Long term Prediction, Spectrum Prediction, Dynamic
Spectrum Access.

I. INTRODUCTION

The recent technological advancements of wireless commu-
nication and rapid growth of bandwidth-hungry innovative ser-
vices are demanding availability of broader spectral band and
hence, changing the conventional course of spectrum access.
In order to accommodate the growing demand and optimize
the use of spectrum, the concept of dynamic spectrum access
(DSA) has been adopted as one spectrum sharing scheme.
DSA is an optimal solution to improve spectrum utilization in
time, frequency and location by allowing opportunistic users
to share spectrum bands in a non-interfering manner when the
bands are not in use by their respective incumbent owners.
This spectrum sharing scheme requires prior knowledge of
spectrum usage pattern, that can be obtained through geo-
location databases or spectrum sensing, and can further be
optimized by spectrum prediction techniques.

Spectrum prediction is a method of sensing the spectrum
bands to infer relevant information about future spectrum

usage. It effectively exploits hidden usage patterns available
in historical spectrum data. Generally, it focuses on attaining
future parameters such as (i) channel status, i.e., prediction
of the spectrum status as ”idle” or ”busy”, (ii) duty cycle,
i.e., prediction of average fraction of time the spectrum chan-
nel is occupied, (iii) signal power level, i.e., prediction of
the power level on a specific channel to define the quality.
Space, frequency and time dimensions of spectrum usage
pattern are random in nature depending on factors such as
the radio propagating environment, transmitter power, users
mobility and others. Predictions based on measured data from
different spectrum sensors (SS) can be used to understand and
exploit such multi-dimensional dependencies of usage pattern.
Even though in most cases the prediction is done to provide
single future step prediction, DSA requires the availability
of accurate long-term (multiple future steps) prediction. It
is undeniable that long-term prediction suffers from various
additional complications, such as accumulation of errors and
reduced accuracy [1], [2]. However, it is possible to explore
different prediction techniques in order to provide multiple
future predictions with a tolerable error.

Extensive research has been carried out on various pre-
diction techniques and applications. Several of those explore
models based on Linear Regression Analysis, Bayesian Infer-
ence or Markov Analysis. However, these models suffer from
limitations to capture nonlinearities due to multidimensional
nature of spectrum data, increased complexity in discrete state
representations and scalability issues which will hinder the
accuracy of channel quality or states prediction [3], [4]. In
recent years, as Deep Learning (DL) is gaining popularity for
its improved likelihood of estimations with self-learning ability
on large data, more and more spectrum learning algorithms are
proposed to provide more accurate information. The learning
algorithms are applicable for both classification and regression
problems. In dealing with classification problems where fea-
ture categorization is the aim, the most popular DL network
is Convolutional Neural Network (CNN) [5]. Whereas in the
case of regressional problems, where learning the sequential
dependency is the goal, recurrent neural network (RNN) based
models such as Long Short-Term Memory (LSTM) is the most
practical to use. LSTM network has achieved great success in
many sequence prediction applications with its ability to cap-
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Fig. 1. System model for prediction enabled Spectrum Management Entity.

ture long-range temporal dependences of sequences. In [6] and
[7], the use of LSTM for spectrum prediction was presented
to provide the channel occupancy prediction. In our previous
work in [8], we explored the accuracy of long-term signal
level predictions on different spectrum bands by analyzing the
spectral-temporal correlations with LSTM based DL networks.
Similarly in [9], optimized LSTM model with Taguchi Method
is presented to predict signal level in different channels and
evaluate the impact of hyper-parameter and network depth
size on prediction accuracy. An approach to provide a long-
term prediction was proposed in [10] from an image inference
perspective. By converting spectrum prediction into 3-order
Tensor completion problem, they were able to predict one
day ahead spectrum state with reasonable error margin. Even
with such broad work in spectrum prediction, finding those
that dealt with long-term spectrum prediction based on joint
spatial-spectral-temporal dependencies is limited.

Considering the aforementioned discussions in spectrum
prediction, this work will address the long-term prediction
problem by learning the joint spatial-spectral-temporal depen-
dencies observed in spectrum data. Taking spectrum measure-
ment data in the form of received signal power in dBm from
sparsely distributed SS, spatially interpolated spectrum map
using Inverse Distance Weighting (IDW) method is created
similar to [11] for a particular region in Spain, within 6 Km
radius from the center of Madrid. As a result, the spectrum
data becomes a function of frequency, time and space. In
order to provide the long-term predictions of spectrum data,
we proposed to apply the Convolutional LSTM (ConvLSTM)
based DL network with a sequence to sequence architecture.
In summary, the main contributions of this work are:
• Formulate a new long-term spectrum prediction scheme

with ConvLSTM-based DL network to capture the joint
spatial-spectral features and temporal dependencies of the
spectrum data.

• Evaluate the proposed network with real environment
spectrum data and assess the long-term prediction accu-
racy in different spectrum bands.

The remainder of this paper is organized as follows. After the
introductory Section I detailing spectrum prediction, Section
II is dedicated to preliminary discussions on system model and
constructing interpolated spectrum map. After that, details of
long-term spectrum prediction scheme is presented in Section
III. Section IV provides dataset description and experimental
results, followed by concluding remarks in Section V.

II. SYSTEM MODEL

The intent of the long-term spectrum prediction problem
defined in this work is to use the previously observed spectrum
measurement data from multiple locations over wide spectrum
band to forecast fixed length and multiple-slot future spectrum
data, in terms of received power level, in a particular region. In
a practical scenario, as illustrated in Fig. 1, for a heterogeneous
network environment with I multiple incumbent spectrum
owners and O opportunistic network users, a centrally con-
trolled database entity could be responsible for identifying
available spectrum channels based on long term predictions.
Suppose, K sparsely distributed SS are continuously mon-
itoring the power level from multiple frequency bands, F ,
and sending the received signal power level (P , that varies
over time) to the management entity. The spatial region of
interest is partitioned into X grids in one (or rows) side and
Y grids on the other side (or columns). Then the interpolated
spectrum map is created for a grid indicated as (x, y), where
x ∈ 1, 2, ...X and y ∈ 1, 2, ...Y by fusing/combining measured
data from the five SS. There are several techniques such
as non-geostatistical and geostatistical (univariate/multivariate)
interpolating methods that can be considered depending on
sample size and the nature of data sampling [12]. In this
work, due to the unsystematic nature of SS placement, we have
chosen to use IDW method to linearly combine the measured
values from SS with a weighting coefficient ωk that is an
inverse function of the distance from a SS the grid of interest.
For a given grid in space (x, y), the interpolated spectrum
measurement value p(x,y)(f,t) at a particular time, t and channel, f
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is evaluated based on measurement data from those K nearby
SS as [12]:

p
(x,y)
(f,t) =

K∑
k=1

ωkp
k
(f,t) (1)

where pk(f,t) is measured power in dBm by the kth SS and
ωk refers to the weighting coefficient, assigned to each SS,
expressed as:

ωk =
d−nk∑K
j=1

1
dnj

(2)

where n is a path-loss exponent (between 2 to 6) and dk are
the Euclidean distances from the grid of interest to the kth

SS.
The interpolated spectrum map, thus, can be represented

by a tensor χ with X × Y × F × t representing the 4 di-
mensionalities. Furthermore, if we consider a grid referencing
approach, where a particular location l representing the grid
in space (x, y) is defined for square unit area, then it is
possible to simplify the above tensor representation with only
l × F × t dimensions. For sequentially obtained spectrum data
χ1, χ2, χ3, χ4, ..., the long-term spectrum prediction problem
evaluated with a DL network is defined as

〈χt−n, ....χt−2, χt−1〉 7−→ 〈χt, χt+1, ....., χt+m〉

where n and m represents the historical observations and the
future instants in time, respectively.

III. LONG-TERM SPECTRUM PREDICTION NETWORK

A. Convolutional LSTM Networks

The impressive success of DL prediction problems that
involve processing time-sequence information have been
achieved with RNN architectures that are ”deep in time”. The
conventional RNN has the capability to model the dynamic
temporal behavior of sequential inputs by having a recurrent
hidden state whose activation at each time step depends on that
of the previous time. However, it faces a significant limitation
with the ability to back-propagate an error through a long-
range temporal interval, also known as vanishing gradient
problem. In order to solve such difficulties and effectively
capture the long-range temporal dependencies, LSTM is found
to be more efficient [9]. Incorporating memory units that
explicitly allow the network to learn when to ”forget” pre-
vious hidden states, and when to update hidden states given
new information have improved gradient training for LSTM
Networks.

The joint multi-dimensional dependencies in space, fre-
quency and time that are observed in spectrum data can be
considered as a complex higher-order learning problem for
LSTM networks. Although they are already proven at handling
spectral-temporal dependencies for spectrum prediction, main-
taining structural locality and solving such extended problems
will be challenging [13]. Thus, in order to acquire a joint
spatial-spectral feature and also effectively analyzes temporal
dependency for spectrum data, ConvLSTM that is discussed
in [14], is considered in this work.

Fig. 2. The learning and predicting ConvLSTM-based DL network with
sequence-to-sequence architecture proposed for Long-term spectrum predic-
tion.

ConvLSTM combines CNN and LSTM taking the best of
the two worlds to learn the multi-dimensional dependencies
in sequential data [15]. CNN is widely known feed-forward
network with its capability to extract features from a multi-
dimensional input data through a convolution operation of the
input with a filter (kernel). Whether it 2D layout in the case
of image or 3D structure in video frames, its ability to auto-
matically discover relevant contextual and spatial features with
reduced number of parameters makes it more relevant [15]. In
ConvLSTM architecture, the inputs to the network are priorly
transformed or convolved with feature extraction parameters
(weights) to produce a fixed-length matrix representation. Key
equations that define ConvLSTM for a given input tensor χt
are given in (3):

it = σ(Wχi
∗ χt +WHi ∗Ht−1 +WCi � Ct−1 + bi)

ft = σ(Wχf
∗ χt +WHf ∗Ht−1 +WCf � Ct−1 + bf )

ot = σ(Wχo
∗ χt +WHo ∗Ht−1 +WCo � Ct−1 + bo)

Ct = ft � Ct−1 + it � g(Wpc ∗ χt +WHc ∗Ht−1 + bc)

Ht = ot � }(Ct) (3)

where � and ∗ denotes the Hadamard product and the con-
volution operator, respectively. it, ft, ot, Ct and Ht−1 are
matrices all representing the gating units (input, output, for-
get), cell unit and the hidden state, respectively. The weights,
Wi,Wf ,Wc,Wo, corresponds to feature extracting convolu-
tional filter matrices, which are multidimensional arrays in
nature, used to transform in the state-to-state and input-to-
state convolutional transitions.

The selection of input and output activation functions,
(} and g), depends on the learning problem at hand. The
prediction of spectrum data from previous observations is
real-valued problem, so rather than letting those functions be
tanh(z) = ez−e−z

ez+e−z , hyperbolic tangent to squash the values
within the range of [-1,1], it is more advisable to use rectifier
- ReLU, R (z) = max(0,z), as activation function. Whereas the
gate activation functions usually takes the σ(z) = (1+e−x)−1,
sigmoid non-linearity to squash the values within the range of
[0,1]. wp and b are Weights and biases, respectively, learned by
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the network by minimizing the loss between the ConvLSTM
outputs and the actual samples during network training.

Extending the discussion to multi-step prediction problem
for spectrum data instantiating a one class of sequential learn-
ing task: multi input-multi output, that can be implemented
with an encoder-decoder network arrangement. As illustrated
in Fig. 2, the encoder maps input sequences to a fixed-length
matrix and the decoder (predictor) unfolds the matrix and
generate a sequence of arbitrary length data. It comprises
two 2D-ConvLSTM hidden layers at the encoder, and LSTM
hidden layer that is used to capture memory and hidden states
from the encoder output, a 2D-ConvLSTM hidden layer and
fully connected (dense) layer at the decoder. The bottom of
ConvLSTM layer at the encoder receives a lenw sequence of
locnum X ferqchan dataset where lenw represents the number
historical observations, and locnum and ferqchan represent
the number of locations considered and the multiple spectrum
channels in a band, respectively, to be filtered by a kernel
with a stride of 1 sample. Similarly at the decoder side, the
dimensionality of predicted output is given as a lenm sequence
of locnum X ferqchan dataset where lenm represents the
long-term prediction length. With a simplified representation
of space grids to location mapping, we were able to make use
of 2D kernels with a very small size of 3 × 3 at the bottom
layer of encoder, and 1 × 1 at the top layer of both encoder
and decoder.

B. Network Training

The network training is implemented in R with the help
of TensorFlow framework. We selected the Nesterov accel-
erated adaptive moment estimation (NADAM) algorithm as
the optimizer with tuned hyper-parameters of β1 = 0 : 9,
β2 = 0 : 999, ε = 10−8, λ = 0.004 and `r = 0.0002
and training loss measured in Mean Square Error (MSE).
Additional hyper-parameters to consider are the number of
convolutional filters where the minimum selection criteria of
filter size is based on the multiple spectral-spatial features to
be extracted.

The dataset is divided in 80/10/10 ratio for network training,
validating and testing, respectively. In order to reduce the
effect of over-fitting, we considered unit dropouts at both
encoder and decoder with p = 0.3 probability during the
pre-training phase and batch normalization as regularization
techniques. Furthermore, in order to account the faulty mea-
surements that might have an impact on the interpolated
spectrum data, the network is trained with an added Gaussian
noise with variance 0.2.

IV. EXPERIMENTAL EVALUATION

A. Data Description

The performance of the proposed network is evaluated on
aggregated spectrum measurement data from Electrosense1

open API for UHF bands of 450-520 MHz. Measurement
data from five SS located in Spain, with in 6 Km radius from

1available at https://electrosense.org/

Fig. 3. Predicting RMSE for Spectrum data for varying predicting time step

the center of Madrid is considered. The resolution bandwidth
of each individual spectrum channel is 200 kHz with 3 minutes
resolution time, which corresponds to 840,000 measurement
data per sensor obtained for the duration of 5 days.

B. Experimental Results and Discussions

The spectrum prediction performance is evaluated using
Root Mean Square Error:

RMSE =

√√√√ 1

T

T∑
j=1

(yj − y′j)2 (4)

where T is the number of samples considered, and y′j and yj
are the predicted and actual values, respectively.

RMSE values w.r.t. future time steps and different spec-
trum channel are presented to evaluate prediction accuracy of
the network. The spectrum data prediction in terms of signal
power level is done for the next 150 minutes for 70 MHz
bandwidth over a selected 4 km2 area2. The predicted output
is based on 120-time steps (or 6 hrs. of past observations)
to predict an output with dimensions of 50 time steps, 1600
location points and 350 spectrum channel. As shown in Fig. 3,
an increase in future time steps increases the accumulated error
that is propagated from the previous predictions resulting in
RMSE performance to consistently increase. However, even
with that, we were able to manage values below 5.012,
which is the combined sample standard deviation we set
as a benchmark. The spectrum prediction for a particular
location l = 268 (UTM coordinates of X = 592875.8 m
and Y = 638032.6 m) is illustrated for 450-520 MHz in
Fig. 4. It shows that the prediction is more accurate in terms
of capturing spectral dependencies and long term temporal
spectrum usage patterns than changes that occur for a short
time interval.

RMSE values averaged for all location points within the
4 km2 area is presented for different spectrum channels
in Fig. 5. As shown, 95% of RMSE values are deviating
within ±0.07 from the mean indicating the stable prediction
performance of the proposed network.

2(2km X 2km) square with starting point at [40.33839, -3.774233]
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Fig. 4. Comparison between the measured spectrum data (left) and the corresponding predicted data (right) for time slot of 3 hrs. duration.

Fig. 5. RMSE performance in different spectrum channels averaged for a
given 4km2 area

V. CONCLUSIONS AND FUTURE WORKS

In this work, we propose ConvLSTM-based DL neural
network with sequence-to-sequence architecture for long-term
spectrum prediction problem by capture the joint spatial-
spectral-temporal dependencies observed in spectrum data. To
evaluate the prediction accuracy of the proposed network in
terms of RMSE, measurement data from five SS located in
Spain, with in 6 Km radius from the center of Madrid is
used. The long-term prediction as SNR in dB is done for
the next 180 minutes for UHF bands of 450-520 MHz over
the selected 4 km2 area. As future time steps increases, the
accumulated error propagated from the previous predictions
increase resulting in RMSE value to consistently rise. Even
with that, RMSE values obtained are less than 5.012, which is
the combined sample standard deviation we set as benchmark.
Similarly,the 95% average RMSE value for different spectrum
channels deviated within ±0.07 from the mean indicating the
stable prediction performance of the proposed network. As
for future work, the degree of predictability with respect to the
increased length of future prediction and incomplete measured
data is an area worth investigating.
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