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Abstract—Foot ulceration can be prevented by using thermal
information of the plantar foot surface. Indeed, important in-
dicators can be provided with a thermal infrared image. As
part of a non-constraining acquisition protocol, these images are
freehandedly taken with a smartphone equipped by a dedicated
thermal camera. A total of 248 images have been obtained from
an acquisition campaign composed of control and pathological
subjects. Our aim is the segmentation of these plantar foot
thermal images. To that end, we compare three different deep
learning methods namely, the Fully Convolutional Networks
(FCN), SegNet, U-Net, and the previously proposed prior shape
active contour-based method. 80% of our database serves to train
the 3 deep learning networks and 20% are used for the test.
When applied to our data, results show that the SegNet method
outperforms the three other methods with a Dice Similarity
Coefficient (DSC) equal to 97.26%. This method also shows
efficiency in segmenting both feet simultaneously with a DSC
equal to 96.8% for a smartphone based plantar foot thermal
analysis for diabetic patients.

Index Terms—Plantar foot thermal images, Deep Learning,
prior shape active contour, image segmentation.

I. INTRODUCTION

Diabetic foot is a common disease among diabetic patients
leading to foot ulceration which is the primary reason for
diabetic related foot amputations. The occurrence of foot
ulcer is often associated with foot hyperthermia. In [1], foot
hyperthermia was defined as a temperature difference higher
than 2.2°C between a foot region and the same region on the
contralateral foot. According to [1], foot ulcer occurrence can
be reduced by 70% if the foot hyperthermia is early detected.
This information can be identified using a thermal infrared
camera, as reported in several studies [2]–[5]. In fact, most of
these studies require a constraining acquisition protocol which
imposes on the person who participates in the acquisition to
put his feet in a special device that hides all other thermal
sources except those coming from the plantar foot. This
process ensures good image quality and therefore a low level
of segmentation complexity. Our aim is to develop new mobile
and user-friendly technology to precisely analyze the plantar
foot temperature in diabetic foot problem. We, therefore, free
ourselves from using a complex and constraining isolation
system unlike [3]–[6]. Images will be freehandly taken with
a smartphone equipped by a dedicated thermal camera. The
full automatic processing of the data is to be performed in
the smartphone itself. It is expected that this overall protocol
can be generalized in a clinical routine or even at home. The

first step of this processing is a fully automatic segmentation
of the plantar foot surface. Thus, the automatic segmentation
of such images is difficult, since the occurrence of other
thermal sources of the body. Classical segmentation methods
fail to segment these specific images as demonstrated in a
recent work [7]. We, therefore, presented a prior shape based
active contour method that proposes to modify the snake
functional of Kass et al. [8] by adding an extra energy
term. This term guides the snake to the desired contour by
minimizing a curvature difference between the snake curve
and the prior shape curve. In previous work [9], we compared
the proposed method to two prior shape-based active contour
models. The first method is the Ahmed et al. method [10]
which assesses the shape matching performed directly in the
Fourier descriptor space. The second method is proposed by
Chen et al. [11]; authors proposed to find the transformations
(scale, rotation, and translation) such as the prior shape is
closely associated with the transformed curve. When applied
to our database of 50 plantar foot thermal images, results
show that our proposed method outperforms the two others.
The major problem with these methods is their sensitivity to
the position of the initial contour. Even though the previosly
proposed method is less sensitive, an automatic initialization
process has to be performed to obtain a better result. Moreover,
the characteristics of the images are different from person to
person. Let’s take the example of a healthy (or not) person
with toes that are always cold. In this case, active contour-
based methods may fail to find the good foot contour even
with an imposed shape constraint. So that, more powerful and
robust segmentation methods are required. In recent years,
deep learning techniques have proven spectacular progress.
Initially intended for image classification [12]–[15], they are
more and more applied to a wide variety of other tasks,
in particular for semantic segmentation. To the best of our
knowledge, no studies have applied deep learning for diabetic
plantar foot thermal images segmentation.
In the present paper, we propose to select the most suitable
method for plantar foot thermal image segmentation. Thus,
we compare three different deep learning networks namely, the
Fully Convolutional Networks (FCN) [16], the U-Net [17] and
SegNet [18]. These networks are the most successful state-of-
the-art deep learning techniques for semantic segmentation. To
train these networks, we launched a data acquisition campaign
within the Diabetic Foot Service of the Regional Hospital of
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Orleans. 198 pathological plantar foot images were acquired.
A total of 248 images have been obtained thanks to our
previous database of healthy persons. 80% of the total servers
in the training of our three networks with a data augmentation
operation. 20% is used as a test database for all compared
methods. Results given by these three networks are then
compared to segmentation results given by the previously
proposed prior shape active contour method when applied on
our test database.
The remainder of the paper is organized as follows. In Section
2, we describe our acquisition campaign and the preprocessing
of our database. Section 3 details the segmentation methods,
the deep learning networks, and the proposed prior shape-
based active contour method. In section 4, the choice of
parameters of each method is detailed. Then, qualitative and
quantitative results given by the different methods are carried
out to select the most suitable method for plantar foot thermal
image segmentation. We test also the robustness of the best
model when segmenting two feet simultaneously. Finally,
conclusions and perspectives are presented in the last section.

II. MATERIALS

In this section, we first elaborate the choice of the smart-
phone thermal camera, describe the control group and the
diabetic foot database. Then, we detail the preprocessing of
the plantar foot thermal images.

A. Thermal image database

1) The chosen camera: is the FlirOne Pro thermal camera
design to be plugged to a smartphone. This camera has a
thermal image resolution of 160x120 pixels and a thermal
sensor spectral range of 8-14 µm. FlirOne Pro can detect
temperature differences of 0.1°C which is enough to detect
the possible hyperthermia variations of interest.

2) Control group database: is composed of 25 healthy
(non-diabetic) persons who participated in the first acquisition
campaign [7]. This sample group was composed of 10 female
and 15 males of staff members of Orleans University with a
mean age of 34. The acquisition protocol detailed in [7] was
respected.

3) Diabetic foot group database: is composed of 36 di-
abetic persons that participated in our acquisition campaign
within the Diabetic Foot Service of the Regional Hospital
of Orleans. This sample group was composed of 10 female
and 26 males with a mean age of 69. This group contained
diabetic foot persons who may have foot ulcers. We exclude
people who have amputated foot parts. The participants have
been followed over a period of 2 months. A patient may
have been part of acquisition more than one time. The same
acquisition protocol was respected. A total of 99 images have
been acquired.

B. Database preprocessing

Images from the FlirOne Pro are in JPEG format of
640×480 pixels. Labels are displayed at the bottom and a
temperature bar is displayed on the right side of the image. For

all images of our database (control and diabetic foot group),
the temperature bar and the labels are first removed from the
image. Then, the left foot image is separated from the right
foot image by splitting the image into two equal parts. The left
foot is then flipped to obtain the same orientation between both
foot images. The database is therefore composed of a total of
248-foot images with the same orientation. These images were
manually annotated by an expert and correspond to the ground
truth maps. 20% of this database corresponding to 50 images
serves to validate results and to compare the methods detailed
above. 80% of the database is used to train the deep learning
models. This train database has occurred a data augmentation
thanks to three rotations and two contrast changes to guarantee
the training performance of our networks. In our context of
foot segmentation, these transformations applied to the data
are justified and do not change the relevant information in
the image; on the contrary, they allow to make the model
more robust. Finally, the overall training data is equal to 1134
images.

III. METHODS

We here review the methods to be applied to our segmenta-
tion problem. Deep learning methods are first detailed, and
then we present the previously proposed prior shape-based
active contour method.

A. Deep Learning methods

Deep learning algorithms have solved a variety of computer
vision problems including semantic segmentation. This task
consists of classifying each pixel of the image into an object
instance. Deep Learning models, such as Convolutional Neural
Networks (CNNs), have greatly contributed to the increase
of performance on this field. CNNs are made up a series of
convolution layers which extract different characteristics from
the images, and fully connected layers based on the multilayer
perceptron to classify an object. Semantic segmentation not
only requires discrimination at pixel level but also to project
the discriminative feature onto the pixel space. Thus, all
semantic segmentation networks are built on two main phases.
First, the encoder (downsampling) network which corresponds
to a pre-trained classification network such as vgg-16 [14],
ResNet [13], AlexNet [15], followed by a decoder (upnsam-
pling) network which allows the discriminative projection of
the pixel onto the pixel space. The most popular initial deep
learning approaches are the Fully Convolutional Networks
(FCN) and the SegNet network as they take advantage of
existing CNNs as powerful models, transform them from
networks which purpose is classification to make suitable for
segmentation. Another example of networks, U-Net, initially
proposed for biomedical image segmentation. Here we detail
these three networks.

1) Fully Convolutional Networks (FCN): has been pro-
posed by Long et al. [16]. Authors transformed the existing
and well-known classification models into fully convolutional
ones by replacing the fully connected layers with convolutional
ones using 1x1 convolution. Instead of producing classification
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scores as output, spatial maps are generated. In low resolution,
the process produces a class presence heatmap which is up-
sampled using transposed convolutions. Furthermore, the up-
sampling process is, at each stage, enhanced by concatenating
predicted characteristics maps from the downsampling path. In
addition, to completely recover the lost spatial information in
the downsampling layers, skip connection is also introduced
following each convolution block.

2) SegNet: has been proposed in 2015 [18]. The encoder
network of SegNet is composed of 13 convolutional layers
that represent the first 13 convolutional layers of the vgg-16
network [14]. The training process is then initialized using
the trained weights for classification on large data sets. The
fully connected layers are eliminated and replaced by higher
resolution feature maps at the deepest output of the encoder.
The 13 encoder layers have their corresponding 13 decoder
layers. The decoder stage of SegNet is composed of a set of
upsampling and convolution layers. Each upsampling layer in
the decoder stage corresponds to a max-pooling one in the
encoder part. Those layers upsample feature maps using the
max-pooling indices from their corresponding feature maps in
the encoder phase. The upsampled maps are then convolved
with a set of trainable convolutional filters to produce dense
feature maps. Once the feature maps have been restored to the
original resolution, they are sent to the softmax classifier to
produce the final segmentation.

3) U-Net: has been proposed by O. Ronneberger et al. [17].
Authors have extended the FCN [16] for biological images.
The encoder part of U-Net has an FCN-like architecture which
extracts characteristics with 3x3 convolutions. The decoder
part uses deconvolution that reduces the number of feature
maps while increasing their dimensions. The feature maps
cropped from the encoder part of the method are copied into
the decoder to avoid losing the pattern information. In the
end, the feature maps are processed with a 1x1 convolution
to produce the segmentation map and finally categorize each
pixel of the input image with the softmax classifier.

B. The previously proposed prior shape based method
We have proposed to modify the snake functional of Kass

et al. [8] by adding prior shape energy. This extra energy
function assesses the normalized difference between the curve
curvature and the prior shape curvature during the contour
evolution. It imposes the shape of the foot during the snake
modifications. The total energy of the proposed model is the
sum of four different energy functions including the prior
shape energy EPS , the internal Eintern, image Eimage and
external Econ ones. The internal energy contains two terms:
length and curvature. The image energy is given by the
gradient information. The external constraint is the balloon
energy.

EPS = γ|Css(s)− ζC∗ss(s)|2, (1)

Eintern = α|Cs(s)|2 + β|Css(s)|2, (2)

Eimage = −Wedge|∇I(C)|2, (3)

Econ = δ|η(C)|2, (4)

where C and C∗ are the snake curve and the prior shape
curve, respectively. C and C∗ depend both on the curvilinear
abscissa s ∈[0, 1] and on time t. γ is the weight of the prior
shape energy and ζ = |Css(s)|

|C∗
ss(s)|

is the normalization factor.

Cs = ∂C
∂s , Css = ∂2C

∂s2 , η(C) is the outward unit norm to the
curve C. The parameters α and β control the internal energy
whereas Eimage and Econ depend on parameters Wedge and δ
respectively. As the initial contour has to grow, we choose δ to
be a positive constant in order to make the balloon growing.
Minimizing the total energy function of the model leads to
solving the Euler Lagrange equation:

αCss+(β+γ)Cssss−γζC∗ssss+
∂(Eimage + Econ)

∂C
= 0, (5)

where Cssss =
∂4C
∂s4 and C∗ssss =

∂4C∗

∂s4 . The proposed method
is designed to be invariant to scale, rotation and position
difference between the active contour and the prior shape one.
In fact, during the snake evolution, both snake and prior shape
curve are examined from the same initial point (the lowest
point of the calcaneus). As a result, the method is invariant to
rotation. The prior shape energy is a function of the relative
positions of C and C* which avoids updating the translation
parameter. Finally, we used normalized curvatures, the ζ term
in equation 5, which avoids updating the scale factor.

IV. RESULTS

In this section, we first give the set of parameters needed for
each method. Next is qualitative and quantitative results given
by the compared methods when applied to our test database.

A. The choice of parameters

The chosen parameters are those that have given the best
results after several tests. The three deep learning methods
are all based on the pre-trained network model VGG-16 [14].
The encoder depth; which is the number of downsampling
(or upsampling) operations, is chosen equal to 5 as the
default value. We train the networks using stochastic gradient
descent with momentum optimizer (SGDM). The momentum
is defined as the contribution of the previous gradient step to
the current iteration. We have chosen the initial value of this
parameter equal to 0.9 assuming that this value works well
for most problems. Effectively, this value is suitable to FCN
and segNet, unlike U-Net which gave better scores with a
momentum equal to 0.3. We set the initial learning rate equal
to 0.01 for FCN and SegNet which is the default value for
the SGDM solver. Again, a different value is used with U-Net
equal to 0.0001. The stochastic gradient descent algorithm
evaluates the gradient and updates the parameters using a
subset of the training set (a mini-batch). The size of this
mini-batch is chosen to be 4 images for the 3 networks. When
the learning algorithm completely passes over the learning
data set, an epoch is performed. We set the maximum number
of epochs to 100. The set parameters of the prior shape snake
method is α= 0.1, β= 4, Wedge= 20, δ= 0.2 and γ= 35.
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B. Qualitative results

We qualitatively evaluate the performance of the 3 tested
deep learning models and our prior shape active contour
method. Results are presented in Fig.1 for 3 images selected
from the test database. Results show that SegNet and FCN
methods give both qualitatively good results compared to the
prior shape-based method and the U-Net network for the 3
tested images.

Fig. 1. Segmentation of 3 plantar foot thermal images (first row). The second
row corresponds to FCN network, while the third one shows the SegNet
networks results. Results given by U-Net network are in the fourth row and
our prior shape active contour-based method is presented in the last row. The
blue regions correspond to the segmentation results found by the methods
while the green curve represents the ground truth manually annotated by the
expert.

C. Quantitative results
We use the Dice Similarity Coefficient (DSC) [19] as an

evaluation metric. This score assesses the similarity between
the foot region given by the ground truth contour and the re-
gions bounded by the segmentation regions given by the prior
shape active contour-based method and the three deep learning
networks. Table I shows the mean scores of DSC given by the
methods with their respective standard deviations (STD). We
clearly notice that U-Net network has not given acceptable
segmentation results. We tested with several momentum and
initial learning rate values. The number of epochs has also
been increased to improve segmentation results, but without
success. This may be due the fact that the size of the training
database is not large enough for that network to learn correctly.
The best segmentation result is given by the SegNet method
with a DSC equal to 97.26% not too far from the result given
by the FCN method.
Since our aim is to develop an automatic mobile application
for the precise visualization and analysis of plantar diabetic
foot temperature, the real-time processing time is important.
We go further and we propose segmenting both the right and
left foot simultaneously, only using the SegNet model which
has learnt to segment a single foot in the image. To do this,
we test SegNet model on the acquired plantar foot thermal
images that contain both feet. Qualitatively SegNet succeeds
in locating and segmenting the image correctly. Fig. 2 depicts
segmentation results given on two different images from our
test database. The mean DSC of 25 test images each containing
two feet is 96.8%.

Fig. 2. Segmentation of 2 plantar foot thermal images (first row) using
SegNet method. In the second row images, the blue regions correspond to
the segmentation results while the green curve represents the ground truth
contours.

TABLE I
DSC (±STD) OF THE SEGMENTATION METHODS.

FCN 96.16% ±0.85%
SegNet 97.26% ±0.69%
U-Net 74.35% ±9.58%

Prior shape method 94% ±2%
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V. CONCLUSION

In the present paper, three different deep learning methods
are compared to a prior shape active contour-based method
for segmentation of plantar foot thermal images. We pre-
sented a new database of diabetic persons acquired within
the Diabetic Foot Service of the Regional Hospital of Or-
leans. This campaign allows us to collect 248 plantar foot
images. The comparison of these four methods carried out on
our test dataset of plantar foot thermal images showed the
superiority of the SegNet network with a DSC of 97.26%.
This method is efficient and robust and showed its efficiency
in segmenting both feet simultaneously with a DSC equal to
96.8%. This makes SegNet method suitable to a smartphone
based application for plantar foot thermal analysis for diabetic
patients. As a conclusion, no constraining isolation system
will be needed, images will be freehandedly taken with a
smartphone equipped by a dedicated thermal camera, and the
fully automatic processing of the data will be performed.
We intend to apply this protocol in clinical routine for the
prevention of foot ulcers in diabetics based on hyperthermia
identification.
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Wilches, MT Arista, L Torres, and H Arbañil. Detection of diabetic
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An active contour model with improved shape priors using fourier
descriptors. VISAPP (1), pages 472–476, 2013.

[11] Yunmei Chen, Sheshadri Thiruvenkadam, Hemant D Tagare, Feng
Huang, David Wilson, and Edward A Geiser. On the incorporation
of shape priors into geometric active contours. Variational and Level
Set Methods in Computer Vision, 2001. Proceedings. IEEE Workshop
on, pages 145–152, 2001.

[12] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436, 2015.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016.

[14] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems, pages 1097–1105, 2012.

[16] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. pages 3431–3440, 2015.

[17] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. International
Conference on Medical image computing and computer-assisted inter-
vention, pages 234–241, 2015.

[18] Vijay Badrinarayanan, Ankur Handa, and Roberto Cipolla. Segnet:
A deep convolutional encoder-decoder architecture for robust semantic
pixel-wise labelling. arXiv preprint arXiv:1505.07293, 2015.

[19] Lee R Dice. Measures of the amount of ecologic association between
species. Ecology, 26(3):297–302, 1945.

2019 27th European Signal Processing Conference (EUSIPCO)


