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Abstract— This article proposes a method to consistently
estimate functionals 1

p

∑p
i=1 f(λi(C1C2)) of the eigenvalues of

the product of two covariance matrices C1, C2 ∈ Rp×p based on
the empirical estimates λi(Ĉ1Ĉ2) (Ĉa = 1

na

∑na
i=1 x

(a)
i x

(a)T
i ),

when the size p and number na of the (zero mean) samples
x

(a)
i are similar. As a corollary, a consistent estimate of the

Wasserstein distance (related to the case f(t) =
√
t) between

centered Gaussian distributions is derived.
The new estimate is shown to largely outperform the classical

sample covariance-based “plug-in” estimator. Based on this
finding, a practical application to covariance estimation is then
devised which demonstrates potentially significant performance
gains with respect to state-of-the-art alternatives.

I. INTRODUCTION

Many machine learning and signal processing applications
require an adequate framework to compare statistical ob-
jects, starting with probability distributions. The Wasserstein
distance, initially inspired by Monge [1] and later by Kan-
torovich [2] in a transport theory analogy, provides a natural
notion of dissimilarity for probability measures and finds a
wide spectrum of applications in image analysis [3], shape
matching [4], computer vision [5], etc.

However, computing the Wasserstein distance is expensive
as it requires to minimize a cost function taking the form of
an integral over the space of probability measures. Despite
recent advances [6], where regularized approximations that
reduce this numerical cost are proposed, the latter is still
involved in general. Special cases exist for which the Wasser-
stein distance assumes a closed form, particularly when
the underlying distributions are zero-mean Gaussian with
covariance matrices C1 and C2. The closed-form formula
however involves the eigenvalues of C1C2 and thus depends
on the unknown population covariance matrices C1 and C2.
Assuming the observation of n1, n2 � p samples with
covariances C1, C2, respectively, C1C2 is conventionally
approximated by its empirical version Ĉ1Ĉ2. As we will
show, this induces a dramatic estimation bias in practical
applications where p is rather large or, equivalently, n1, n2

rather small, a standard assumption in big data applications.
Based on recent advances in random matrix theory, this

article proposes a new consistent estimate for the Wasserstein
distance between two centered Gaussian distributions when
the dimension p of the samples is of the same order of
magnitude as their numbers n1, n2. This work enters the
scope of Mestre’s seminal ideas [7] on the estimation of

*Couillet’s work is supported by the ANR Project RMT4GRAPH (ANR-
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functionals 1
p

∑p
i=1 f(λi(C)) of the eigenvalue distribution

of population covariance matrices C, which can be related to
the (limiting) eigenvalue distribution of the sample estimates
Ĉ via a complex integration trick. We recently extended
this work to the estimation of functionals of the eigenvalue
distribution of F-matrices in [8], i.e., matrices of the form
C−1

1 C2, and applied to the estimation of the natural geodesic
Fisher distance, Battacharrya distance, and Rényi/Kullbach-
Leibler divergences between Gaussian distributions.

Our main contribution is the extension of [7], [8] to func-
tionals f of the eigenvalues of products C1C2 of population
covariance matrices. The Wasserstein distance falls within
this scope for f(t) =

√
t. Unlike [8], where the functionals

of interest (f(t) = t, log(t), log2(t)) are amenable to explicit
evaluations of the complex integrals, the present f(t) =

√
t

scenario is more technically involved and gives rise to real
non-explicit, yet numerically computable, integrals.

In the remainder of the article, Section II introduces the
main model and assumptions, Section III provides our key
technical result and its corollary to the Wasserstein distance
estimation, and a practical application to covariance matrix
estimation is finally proposed in Section IV.

Reproducibility. Matlab codes for the various estimators
introduced and studied in this article are available at
https://github.com/maliktiomoko/RMTWasserstein.

II. MODEL AND MAIN OBJECTIVE

For a ∈ {1, 2}, let Xa = [x
(a)
1 , . . . , x

(a)
na ] be na in-

dependent and identically distributed random vectors with
x

(a)
i = C

1
2
a x̃

(a)
i , where x̃

(a)
i ∈ Rp has zero mean, unit

variance and finite fourth order moment entries. This holds
in particular for x(a)

i ∼ N (0, Ca). In order to control the
growth rates of n1, n2, p, we make the following assumption:

Assumption 1 (Growth Rates). As na →∞, p/na → ca ∈
(0, 1) and lim supp max{‖C−1

a ‖, ‖Ca‖} < ∞ for ‖ · ‖ the
operator norm.

We define the sample covariance estimate Ĉa of Ca as

Ĉa ≡
1

na
XaX

T
a =

1

na

na∑
i=1

x
(a)
i x

(a)T
i .

The Wasserstein distance DW (C1, C2) between two zero-
mean Gaussian distributions with covariances C1 and C2,
respectively, assumes the form [9, Remark 2.31]:

DW (C1, C2) = tr(C1)+tr(C2)−2tr
[
(C

1
2
1 C2C

1
2
1 )

1
2

]
. (1)
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It is easily shown that, under Assumption 1,
1

p
trĈa −

1

p
trCa → 0

almost surely. But estimating tr
[
(C

1
2
1 C2C

1
2
1 )

1
2

]
is more

involved: this is the focus of the article. Up to a normalization
by p, this term can be written under the functional form:

1

p
tr
[
(C

1
2
1 C2C

1
2
1 )

1
2

]
=

1

p

n∑
i=1

√
λi(C1C2) ≡ D(C1, C2;

√
·)

(2)
with λi(X) the i-th smallest eigenvalue of X .

Our objective is to estimate the more generic form

D(C1, C2; f) ≡ 1

p

n∑
i=1

f(λi(C1C2)) (3)

for f : R → R a real function admitting a complex-
analytic extension. To this end, we shall relate the eigenval-
ues λi(C1C2) to λi(Ĉ1Ĉ2) through the Stieltjes transform
(mθ(z) ≡

∫ dθ(λ)
λ−z for measure θ and z ∈ C) of their

associated normalized counting measures

µp =
1

p

p∑
i=1

δλi(Ĉ1Ĉ2), νp =
1

p

p∑
i=1

δλi(C1C2).

In particular, mµp(z) = 1
p

∑p
i=1

1
λi−z for λi = λi(Ĉ1Ĉ2).

With these notations, we are in position to introduce our
main results.

III. MAIN RESULTS

The following theorem provides a consistent estimate for
the metric D(C1, C2; f) defined in (3).

Theorem 1. Let Γ ⊂ {z ∈ C, real[z] > 0} be a contour
surrounding ∪∞p=1supp(µp). Then, under Assumption 1,

D(C1, C2; f)− D̂(X1, X2; f)
a.s.−→ 0

where

D̂(X1, X2; f) =
n2

2πip

∮
Γ

f

(
ϕp(z)

ψp(z)

)[
ϕ′p(z)

ϕp(z)
−
ψ′p(z)

ψp(z)

]
ψp(z)dz

and, recalling mµp(z) = 1
p

∑p
i=1

1
λi−z for λi = λi(Ĉ1Ĉ2),

ϕp(z) = z
1− p

n1
− p
n1
zmµp (z) , ψp(z) = 1− p

n2
− p

n2
zmµp(z).

The result of Theorem 1 is very similar to [8, Theorem 1]
established for functionals of the eigenvalues of C−1

1 C2. The
main difference lies in the expression of the function ϕp(z).

Proof. The proof of Theorem 1 is based on the same
approach as for [10, Theorem 1]. One first creates a link
between the Stieltjes transform mνp and D(C1, C2; f) using
Cauchy’s integral formula:

1

p

p∑
i=1

f(λi(C1C2)) =

∫
f(t)dνp(t)

=
1

2πi

∫ [∮
Γν

f(z)

z − t
dz

]
dνp(t)

=
−1

2πi

∮
Γν

f(z)mνp(z)dz (4)

with Γν a contour surrounding the support supp(νp) of
νp. To relate the unknown mνp to the observable mµp , we

proceed as follows. By first conditioning on Ĉ1, Ĉ
1
2
1 Ĉ2Ĉ

1
2
1

is seen as a sample covariance matrix for the samples
Ĉ

1
2
1 C

1
2
2 x̃

(2)
i , for which [11] allows one to relate mµp to

the Stieltjes transform of the eigenvalue distribution ζp of
C

1
2
2 Ĉ1C

1
2
2 . The latter is yet another sample covariance matrix

for the samples C
1
2
2 C

1
2
1 x̃

(1)
i ; exploiting [11] again creates the

connection from mζp to mνp . This entails the two equations:

zmµp(z) = ϕp(z)mζp (ϕp(z)) + op(1) (5)

mνp

(
z

Ψp(z)

)
= mζp(z)Ψp(z) + op(1). (6)

where Ψp(z) ≡ 1− p
n2
− p
n2
zmζp(z). Successively plugging

(5)–(6) into (4) by means of two successive appropriate
changes of variables, we obtain Theorem 1.

Theorem 1 takes the form of a complex integral which,
for generic choices of f , needs be numerically evaluated. In
the specific case of present interest where f(z) =

√
z, this

complex integral can be evaluated as follows.

Theorem 2. Let λ1 ≤ . . . ≤ λp, with λi ≡ λi(Ĉ1Ĉ2),
and define {ξi}pi=1 and {ηi}pi=1 the (increasing) eigenvalues
of Λ− 1

n1

√
λ
√
λ
T

and Λ− 1
n2

√
λ
√
λ
T

, respectively, where
λ = (λ1, . . . , λp)

T, Λ = diag(λ) and √. is understood entry
wise. Then, under Assumption 1,

D(C1, C2;
√
·)− D̂(X1, X2;

√
·) a.s.−→ 0

where, if n1 6= n2,

D̂(X1, X2;
√
·) = 2

√
n1n2

1

p

p∑
j=1

√
λj

+
2n2

πp

p∑
j=1

∫ ηj

ξj

√
−ϕp(x)

ψp(x)
ψ′p(x)dx

with ϕp, ψp defined in Theorem 1 and, if n1 = n2,

D̂(X1, X2;
√
·) =

2n1

p

p∑
j=1

(√
λj −

√
ξj

)
.

While still assuming an integral form (when n1 6= n2),
this formulation no longer requires the arbitrary choice of a
contour Γ and significantly reduces the computational time
to estimate D(C1, C2,

√
·). For n1 = n2, a case of utmost

practical interest, the expression is completely explicit and
computationally only requires to evaluate the eigenvalues ξj
of Λ− 1

n1

√
λ
√
λ
T

. The latter being a (negative definite) rank-
1 perturbation of Λ, by Weyl’s interlacing lemma [12], the
ξj’s are interlaced with the λj’s as

ξ1 ≤ λ1 ≤ ξ2 ≤ . . . ≤ ξp ≤ λp.

As the λj’s are of order O(1) with respect to p, |λj −
ξj | ≤ |λj − λj−1| = O(p−1), therefore explaining why the
expression of D̂(X1, X2;

√
·) is of order O(1).
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Fig. 1. Deformation of the initial contour Γ (in black) into the new contour
Γ̃ (in blue). The branch cuts are represented in green (i.e., real z’s for which
the argument of ϕ(z)ψ(z) is negative).

Proof. The ξi and ηi, as defined in the theorem statement,
are the respective zeros of the rational functions 1 − p

n1
−

p
n1
zmµp(z) and 1− p

n2
− p
n2
zmµp(z) (see [10, Appendix B]).

Thus, ϕp and ψp can be expressed under the rational form:

ϕp(z) = z

∏p
i=1 z − λi∏p
i=1 z − ηi

, ψp(z) =

∏p
i=1 z − ξi∏p
i=1 z − λi

.

Evaluating the estimate from Theorem 1 for f(z) =
√
z then

requires to evaluate a complex integral involving rational
functions and square roots of rational functions. Since the
complex square root is multivalued, a careful control of
“branch-cuts” is required. To perform this calculus, we
deform the integration contour Γ of Theorem 1 into Γ̃ as
per Figure 1. In the case n1 6= n2, the closed null-integral
contour Γ̃ (blue in Figure 1) is the sum of the sought-for
integral over Γ and of four extra components:
1) Integrals over ε-radius circles around ξi: those are null

in the limit ε→ 0, as confirmed by a change of variable
z = ξi + εeıθ which allows one to bound the integrand;

2) Integrals over the real axis (in the ε→ 0 limit):

A2 =
n2

πp

p∑
j=1

∫ ηj−ε

ξj+ε

√
−(ϕpψp)(x)

[
2
ψ

′

p(z)

ψp(z)

−

(
ϕ

′

p(z)

ϕp(z)
+
ψ

′

p(z)

ψp(z)

)]
dx

=
2n2

πp

p∑
j=1

∫ ηj

ξj

√
−ϕpψp(x)

[
ψ

′

p(z)

ψp(z)

]
dx

− n2

πp

p∑
j=1

∫ ηj−ε

ξj+ε

√
−ϕpψp(x)

ϕpψp(x)

[
d

dx
(ϕp(x)ψp(x))

]
dx

=
2n2

πp

p∑
j=1

∫ ηj

ξj

√
−ϕp(x)

ψp(x)
ψ′p(x)dx

− 2
n2

πp

p∑
j=1

1√
ε ddx

(
1

(ϕpψp(x))

)
(ηj)

+ o(ε)

3) Integrals over the ε-radius circles around ηj , with ε→ 0

A3 = 2
n2

πp

p∑
j=1

1√
ε ddx

(
1

(ϕpψp(x))

)
(ηj)

+ o(ε)

which thus compensates the last (ε-diverging) term in A2.
4) Residues in the λj poles

A4 = 2
n2

p
lim
z→λj

p∑
j=1

√
(ϕpψp)(z) = 2

n2

p

√
n1

n2

p∑
j=1

√
λj .

Putting these terms together entails the result of the theorem
for the case where n1 6= n2. For n1 = n2, it suffices to take
the limit of the expression as ξj → ηj . This yields:

D̂(X1, X2;
√
·) =

2n1

p

p∑
j=1

√
λj

+
2n1

p

p∑
j=1

1

π
lim
t→ξj

∫ t

ξj

√
−ϕp(x)

ψp(x)
ψ′p(x)dx

=
2n1

p

p∑
j=1

√
λj

− 2n1

p

p∑
j=1

1

2πı
lim
ε→0

∮
Γεξj

√
−ϕpψp(x)

ψ′p(x)

ψp(x)
dx

where Γεξj is an ε-radius circular contour around ξj . The
second equality is obtained by deforming the real integral in
the complex plane (see [13] for complex analysis details).
The result unfolds by letting x = ξi + εeıθ.

Consequently, we obtain the following n, p-consistent es-
timate for the Wasserstein distance DW (C1, C2) of (1).

Corollary 1 (Consistent Estimate of DW (C1, C2)). Under
Assumption 1,

1

p
DW (C1, C2)−

[
1

p
tr(Ĉ1 + Ĉ2)− 2D̂(X1, X2;

√
·)
]

a.s.−→ 0

(7)

for D̂(X1, X2;
√
·) given by Theorem 2.

Remark 1 (Estimation of ‖C1 − C2‖2F ). The Frobenius
distance between two covariance matrices also falls under
the scope of the present article for the function f(z) = z.
Indeed,

DF (C1, C2) = ‖C1 − C2‖2F = tr
(
C2

1 + C2
2

)
− 2tr (C1C2) .

Then under Assumption 1 and along with the fact that 1
p trC2

1

can be estimated consistently from 1
p trĈ2

1 − 1
n1p

(trĈ1)2,

1

p
DF (C1, C2)−

[
1

p
tr(Ĉ2

1 + Ĉ2
2 )− p

n1

(
1

p
trĈ1

)2

− p

n2

(
1

p
trĈ2

)2

− 2D̂(X1, X2; ·)

]
a.s.−→ 0.

In this case, D̂(X1, X2; ·) assumes the simple expression

D̂(X1, X2; ·) =
1

p

p∑
j=1

λj =
1

p
trĈ1Ĉ2
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which follows from 1
p trĈ1Ĉ2 − 1

p trC1C2
a.s.−→ 0 (by elemen-

tary probability arguments) or equivalently from a residue
calculus based on Theorem 1 for f(z) = z.

IV. SIMULATIONS AND APPLICATIONS

In this section, we first corroborate our theoretical findings
by comparing the classical plug-in estimator to our proposed
estimator on synthetic Gaussian data. We then provide an
application of our results to improved covariance matrix
estimation based on few samples.

A. Confirmation of our results on synthetic data

We here compare the classical plug-in estimate of the
Wasserstein distance (that is (1) with Ca replaced by Ĉa, a =
1, 2) with our proposed estimate in Corollary 1. Table I lists
the results obtained for Toeplitz matrices C1, C2 estimated
based on various values of p, n1, n2. While our proposed
estimator is designed under a large p, n1, n2 assumption
(as per Assumption 1), it achieves competitive performances
even for small values of p, corroborating here our findings
in [8] for other classes of covariance matrix distances.

p DW(C1, C2) Classical Proposed
2 0.0110 0.0127 0.0120
4 0.0175 0.0198 0.0183
8 0.0208 0.0232 0.0206

16 0.0225 0.0280 0.0227
32 0.0233 0.0339 0.0234
64 0.0237 0.0451 0.0240

128 0.0239 0.0667 0.0244
256 0.0240 0.1092 0.0244
512 0.0241 0.1953 0.0245

(error < 5%) (error > 50%) (error > 100%) (error > 300%)

TABLE I
ESTIMATORS OF THE WASSERSTEIN DISTANCE BETWEEN C1 AND C2

WITH [C1]ij = .2|i−j| , [C2]ij = .4|i−j| , x(a)
i ∼ N (0, Ca); n1 = 1024

AND n2 = 2048 FOR DIFFERENT p. AVERAGED OVER 100 TRIALS.

B. Application to covariance matrix estimation

As a concrete application, Theorem 1 may be used to
improve the actual estimation of covariance matrices under a
small number n ∼ p of sample data, as similarly performed
in [14] for other covariance matrix distances.

The idea is as follows: we first particularize Theorem 1 and
Theorem 2 to the case where one of the covariance matrices,
say C1, is known by taking c1 = 0 (i.e., n1 →∞ for all fixed
p). This gives access to estimates for DW (M,C2;

√
·) for all

deterministic positive definite matrix M . We then minimize
this estimated distance over M in order to estimate C2 by
means of a gradient descent approach.

For C1 known, we redefine µp = 1
p

∑p
i=1 δλi(C1Ĉ2) and

obtain, as a corollary of Theorem 1:

Theorem 3. Let Γ ⊂ {z ∈ C, real[z] > 0} a contour
surrounding ∪∞p=1supp(µp). Then,

D(C1, C2; f)− 1

2πic2

∮
Γ

F
(
−mµ̃p(z)

)
dz

a.s.−→ 0

with mµ̃p(z) = p
n2
mµp(z) + p−n2

n2z
and F ′(z) = f( 1

z ).

Proof. For C1 known (c1 → 0), ϕp(z) = z, and the estimator
of Theorem 1 yields:

D̂(X1, X2; f) =
1

2πi

∮
Γ

f

(
z

ψp(z)

)[
ψ′p(z)

ψp(z)
− 1

z

]
ψp(z)dz

c2
.

Using the relation mµ̃p(z) = −ψp(z)
z , we then get

D̂(X1, X2; f) = − 1

2πic2

∮
Γ

f

(
− 1

mµ̃p(z)

)
m′µ̃p(z)zdz

and the result is immediate after an integration by parts.

For f(z) =
√
z, one has F (z) = 2

√
z and we obtain, with

a similar proof as for Theorem 2,

D(C1, C2;
√
·)− D̂(C1, X2;

√
·) a.s.−→ 0,

D̂(C1, X2;
√
·) =

2

πc2

p∑
j=1

∫ λj

ξj

√
mµ̃p(x)dx.

Our objective is now to exploit the fact that

C2 = argminM�0DW (M,C2) (8)

where the minimization is over the open cone of positive
definite matrices. Using the approximation D(M,C2;

√
·) '

D̂(M,X2;
√
·), we are then tempted to minimize 1

p tr(M +

Ĉ2)− 2D̂(M,X2;
√
·) in place of DW (M,C2). The former

quantity however has a non zero probability to be negative,
and we thus instead propose to estimate C2 as:

Č2 = argminM h(M)

h(M) =

[
1

p
tr(M + Ĉ2)− 2D̂(M,X2;

√
·)
]2

.

To compute the gradient ∇h(M) of h at position M ,
one needs to evaluate the differential Dh(M)[ξ], at M and
in the direction ξ, in the Riemmanian manifold of p × p
symmetric positive definite matrices (see [15], [14] to further
technical details). We then use the relation Dh(M)[ξ] =
〈∇h(M), ξ〉M where 〈·, ·〉. is the Riemmanian metric defined
as 〈η, ξ〉M = tr

(
M−1ηM−1ξ

)
. We obtain the relation

πıp
∇h(M)

2
√
h(M)

=
1

p
M2

+

p∑
j=1

∫ λj

ξj

√
1

mµ̃p(x)
sym

(
MĈ2(MĈ2 − xIp)−2M

)
dx

where sym(A) = 1
2 (A+ AT) is the symmetric part of A ∈

Rp×p. We can write the latter as:

∇h(M) = 2
√
h(M)

[
sym

(
V Λ∇V

−1
)

+
1

p
M2

]
where V is the orthogonal matrix of the eigenvectors of MĈ2

and Λ∇ is the diagonal matrix with

[Λ∇]kk =
1

πp

∑
j 6=k

∫ λj

ξj

√
1

mµ̃p(x)

1

(λk − x)2
dx

+
1

πp

∑
j 6=k

∫ λk

ξk

√
1

mµ̃p(x)

1

(λj − x)2
dx.
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Algorithm 1 Proposed estimation algorithm.
Require Positive definite initialization M = M0.

Repeat M ←M
1
2 exp

(
−tM− 1

2∇h(M)M−
1
2

)
M

1
2 with t

either fixed or optimized by backtracking line search.
Until Convergence.
Return M .

This finally entails the gradient descent Algorithm 1.
Figure 2 depicts the results of the algorithm. There is

displayed the Wasserstein distance DW (C, ·) between a ma-
trix C having four distinct eigenvalues of equal multiplicity
(precisely, νp = 1

4 (δ.1 +δ3 +δ4 +δ5)) and various estimators
of C: the sample covariance matrix (SCM), the state-of-the-
art “non-linear shrinkage” estimators QuEST1 [16] (based
on a Frobenius distance minimization) and QuEST2 [17]
(based on a Stein loss minimization), and the result of
the gradient descent approach proposed in this section. For
fair comparison, the iterative QuEST1, QuEST2 and our
proposed method are all initialized at M0 the linear shrinkage
estimator from [18]. Note that our proposed choice of C is
particularly suited to mimick an “optimal transport” problem
of displacing the eigenvalues of M0 to the discrete four
positions of the eigenvalues of C.

In addition to the computational simplicity of our gradient-
descent approach with respect to the QuEST estimators (see
the numerical method details in [19]), the figure demonstrates
significant gains brought by our proposed approach for large
values of p/n, where the SCM particularly fails.

V. CONCLUDING REMARKS

Interestingly, while the Fisher distance or Kullbach-Liebler
divergence, which depend on logarithms of inverse of covari-
ance matrices, are understandably difficult to estimate in the
n1, n2 < p regime (see [10] for advanced discussions on this
matter), the Wasserstein distance should not be confronted
with this limitation. Yet, the invertibility of C1, C2 and
the request for c1, c2 ∈ (0, 1) (i.e., p < n1, n2) from
Assumption 1 are fundamental to our proofs. Precisely, the
variable changes exploited in the proof of Theorem 1 to
reach a contour Γν correctly surrounding supp(νp) from a
contour Γ surrounding supp(µp) are not satisfying if c1 > 1
or c2 > 1. These surprising difficulties need clarification.

Another point of interest lies in the comparative advantage
of exploiting a particular covariance matrix distance in spe-
cific scenarios. For instance, it may seem that ill-conditioned
matrices should be more tolerated by Wasserstein distance
estimators than by Fisher distance estimators. Yet, this aspect
is not obvious in our proofs and also deserves more insights.
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