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Abstract—In this article, we develop a comprehensive frame-
work to characterize the coverage probability of backscatter com-
munication empowered cellular Internet-of-Things (IoT) sensor
networks (SNs). The developed framework considers hierarchical
cellular type deployment topology which is practically useful
for various IoT applications. In contrast to existing studies, the
framework is geared towards system level performance analysis.
Our analysis explicitly considers the dyadic fading experienced
by the links and spatial randomness of the network nodes.
To ensure tractability of analysis, we develop novel closed-
form bounds for quantifying the coverage probability of SNs.
The developed framework is corroborated using Monte Carlo
simulations. Lastly, we also demonstrate the impact of various
underlying parameters and highlight the utility of the derived
expressions for network dimensioning.

Index Terms—backscatter communication, dyadic fading,
stochastic geometry, Poisson process, coverage probability.

I. INTRODUCTION
A. Motivation

THE foundation of Internet-of-Things (IoT) is based on
Weiser’s vision of profound software/hardware technolo-

gies that weave themselves into the fabric of everyday life
such that they become indistinguishable. The functionality
and modalities of these technologies is distributed across
a variety of interconnected objects. This inter-connectivity
of objects is pivotal as the collective intelligence of the
IoT network emerges from simple object level interactions.
Ericsson’s recent forecast predicts that there will 1.5 billion
IoT devices with cellular connections by 2022. While cellular
topology allows efficient deployment of IoT sensor nodes
(SNs), connectivity to existing cellular base stations (BSs)
is power hungry even with the state-of-the-art Narrowband
IoT (NB-IoT) radio technology. With the massive volume of
devices, it is essential to explore energy efficient (EE) SN
design as recharging the deployed SNs individually on regular
basis might be impractical.

One way to realize the EE design is to actually harvest
energy from ambient RF signals and then utilize harvested
energy to drive the transceiver on sensor boards [1]. This
design can be further refined by employing RF backscatter
based communication which is based on the RF reflection prin-
ciple. Backscatter radio achieves data transmission from SNs
by modulating information onto the illuminating RF carrier
signal. The RF carrier modulation is achieved by connecting
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an antenna to different loads which fundamentally translates
into different antenna-load reflection coefficients (see Section
2). Backscatter radios can realize power consumption of
the order of µWatts for IoT SNs, mainly because the SN
design does not require expensive analog components such
as RF oscillators, mixers, crystals and decoupling capacitors
etc. Interested readers are referred to a recent tutorial on
Backscatter based IoT SN design in [2]. Optimal dimensioning
of Backscatter based IoT SNs requires a statistical framework
to model such network deployments and subsequently quantify
the impact of various underlying parameters on the achievable
performance. In contrast to traditional wireless networks, the
SNs experience a dyadic channel which is formed by a
combination of forward channel (from SN to access point
(AP)/carrier emitter(CE)) and backward channel (from AP
to SN). In [3], the authors have considered dyadic fading
channel and characterized the performance of a single AP
which is serving multiple SNs. The authors have also explored
collision resolution techniques to improve the performance.
The analysis presented in [3] even for a single AP does not
admit a closed-form solution for the considered performance
metric (decoding/coverage probability) and requires several
folds of numerical integration. This obscures insights into how
the considered performance metric is effected by different
parameters such as node density, path-loss exponent, desired
signal-to-interference-ratio (SIR) threshold, etc. The analysis
cannot be extended to a more realistic scenario where multiple
APs are deployed such that each AP only serves the nearby
SNs. Such a topology is required to realize applications like
smart farms where multiple APs are deployed, each serving
several soil moisture SNs to provide a certain fidelity for
the coverage. Similar topologies arise in other applications
such as air-quality monitoring where sensors are spread across
a wider geographical region. In [4], the authors considered
multiple APs and SNs for Backscatter based IoT networks and
developed a framework for performance analysis. However, the
developed framework ignores the dyadic fading experienced
by the SN transmissions. A related line of work explores
backscattering via ambient RF signals. The interested reader
is directed to [5] for a detailed survey of ambient backscatter
communication.

B. Contribution & Organization
In this article, we develop a statistical framework for quanti-

fying the performance of a backscatter based cellular IoT net-
work in terms of the coverage probability (see Section 3). We
develop novel closed-form bounds on the coverage probability
of SNs which are tractable and do not require any numerical
integration (Section 3). Our proposed framework explicitly ac-
commodates the properties of dyadic fading channel whereby
the forward and the backward channel can experience non-zero
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Fig. 1. Network Model and Architecture of Backscatter AP and SN.

correlation. We also incorporate the spatial randomness of SNs
and APs in our analysis via stochastic geometric modeling (see
Section 2). We corroborate the developed framework with the
help of Monte Carlo simulations (see Section 4) and briefly
explore how the analysis can be employed for dimensioning
backscatter based IoT networks.

II. SYSTEM MODEL

A. Spatial Model
We consider a cellular deployment of backscattered APs

as shown in Fig. 1. The spatial distribution of both APs and
SNs is captured by a two independent homogeneous Poisson
point processes (HPPPs) ΠAP ∈ R2 with intensity λAP and
ΠSN ∈ R2 with intensity λSN respectively [6]. The parameter
λAP (λSN ) is the average number of APs/SNs per unit area.
It is assumed that each AP serves the SNs inside its Voronoi
cell.

B. Channel Model
All links are assumed to experience large scale path-loss

along with small-scale block fading. A backscatter channel is
dyadic in nature, i.e., the reflected signal experiences a channel
gain which is a product (H = HfHb) of forward channel
(AP-to-SN) gain (Hf = ‖Gf‖2) and backward channel (SN-
to-AP) gain Hb = ‖Gb‖2, where, Gi ∼ CN (0, 1), i = {f, b}
with non-zero correlation ρ = E(GfGb). In other words,
the two links as shown in Fig. 1 are correlated with a
correlation factor ρ ∈ [0, 1]. The overall channel gain between
a transmitter and a receiver separated by a distance r is
denoted as Hl(r) = HfHbl(r) where l(r) = Cr−α is the
power-law path-loss function. The path-loss function depends
on the distance r, a frequency dependent constant C and
an environment/terrain dependent path-loss exponent α. The
fading channel gains are assumed to be mutually independent
and identically distributed (i.i.d.) across different links, i.e.
E(Hi,Hj) = 0∀i 6= j. Without any loss of generality, we
will assume C = 1 for the rest of this discussion.

C. Backscatter Communication
We consider mono-static backscattering APs whereby both

transmit and receive antennas are co-located. The AP transmits
an unmodulated RF signal s(t) =

√
2P exp (−i (ωct+ φc))

where i =
√
−1 ωc = 2πfc is the angular frequency

corresponding to the carrier frequency, φc is carrier phase

and E(s2(t)) = P (watts) is the transmit power. It is
assumed that the transmit power is fixed to the maximum
permissible level under regulatory constraints at the desired
transmission frequency fc (Hz). The SN reflects back the
received signal y(t) =

√
2Pl(r)Gf exp (−i (ωct+ φc)) us-

ing the same antenna which is used to receive s(t). The
sensor data payload is modulated onto the reflected signal
by varying the reflection coefficient β(t) = βmb(t) through
load modulation, where b(t) is the binary function of time
which only assumes ±1 values. The parameter βm is coupled
with several hardware design related factors. The reflected
signal received at the AP from an SN (say o) separated by
distance ro is given by, yAP (t) = Go

fG
o
b l(r0)βmbo(t)s(t) +∑

j 6=o∈ΠSN
Gj
fG

j
bl(rj)βmbj(t)s(t) + n(t).Consequently, the

received SINR for a fixed b(t) corresponding to either binary
symbol {0, 1} is given as,

SINR = Γ =

Desired SN signal power︷ ︸︸ ︷
Pl2(ro)HofHobβ

σ2︸︷︷︸
AWGN Noise Power

+
∑

j 6=o∈ΠSN

Pl2(rj)HjfH
j
bβ︸ ︷︷ ︸

Interference from other SNs

,

(1)
where β = ‖βm‖2 ∈ [0, 1], is the reflection coefficient. Here
we assume that each AP uses a different carrier frequency fc
and consequently there is no power aggregation at SNs from
out-of-cell APs. However as SNs are not aware of the fc, the
out-of-cell SNs will contribute to co-channel interference.

III. PERFORMANCE ANALYSIS

A. Dyadic Rayleigh Fading Channel

Consider the small-scale fading experienced on the forward
and backward propagation channel, which is modeled by two
complex Gaussian random variables Gf , G

(I)
f + iG

(Q)
f and

Gb , G
(I)
b + iG

(Q)
b where i =

√
−1. Moreover, from the

assumption that E(Gf ) = E(Gb) = 0, it follows that,

E(G
(I)
f ) = E(G

(Q)
f ) = E(G

(I)
b ) = E(G

(Q)
b ) = 0.

The co-variance matrix of is of the form of [7]

CGfGb
=


σ2
f 0 σfσbρc σfσbρs
0 σ2

f −σfσbρs σfσbρc
σfσbρc −σfσbρs σ2

b 0
σfσbρs σfσbρc 0 σ2

b

 ,
(2)

where |ρc| ≤ 1 and |ρs| ≤ 1 are the correlation coef-
ficients between the in-phase and quadrature components.
Under these assumptions the reflected signal received on
the AP experiences bi-variate Rayleigh fading, i.e., Ḡf =√(

G
(I)
f

)2

+
(
G

(Q)
f

)2

and Ḡb =

√(
G

(I)
b

)2

+
(
G

(Q)
b

)2

have a joint bi-variate Rayleigh distribution given by [8]

fḠf Ḡb (gf , gb) =
gfgb

σ2
fσ

2
b (1− ρ2)

exp

−
[
g2
f

σ2
f

+
g2
b

σ2
b

]
2 (1− ρ2)


× I0

(
ρgfgb

(1− ρ2)σfσb

)
, gf , gb ≥ 0, 1 ≤ |ρ| ,

(3)
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where ρ̃ = 1 − ρ2, ρ2 = ρ2
c + ρ2

s and I0(x) =
1
π

∫ π
0

exp(−x cos(t))dt,is the zeroth order modified Bessel
function of first kind. Joint moments of Ḡf and Ḡb of the form
E(Ḡnf Ḡ

m
b ), n+m = 1, 2, .. were first calculated by Middleton

in [7] as

E(Ḡf ) = σf
√
π/2, E(Ḡb) = σb

√
π/2 ,

E
(
Ḡ2
f

)
= 2σ2

f , E
(
Ḡ2
b

)
= 2σ2

b ,

E
(
Ḡf Ḡb

)
= σfσb

[
2E(ρ)− (1− ρ2)K(ρ)

]
,

(4)

where K(x) and E(x) are complete Elliptic Integrals of first
and second kind respectively. Employing the Eq. (4) the
correlation of variable Ḡf and Ḡb is given

ρ̄ =
E(Ḡf Ḡb)

σfσb
= 2E(ρ)− (1− ρ2)K(ρ). (5)

Clearly ρ̄ 6= ρ and thus there have been several attempts (see
[9]-[10]) to develop algorithms to simulate dependent Rayleigh
random variables with a certain given cross-correlation ρ̄.
Generally generation exploits a coloring matrix which is
obtained via Cholesky decomposition of correlation matrix of
underlying Gaussian process. Interested readers are referred
to [10] for details. It is important to highlight that some prior
studies (which employ analysis in [11], where ρ has different
definition) have confused ρ̄ with the cross-correlation factor
of underlying complex Gaussian random variable ρ resulting
in an erroneous analysis of considered performance metric.

Remark 1: In general E(f(Gf )f(Gb)) 6= E(GfGb);
from this it follows that the correlation coefficient (ρ̄)
of the bi-variate Rayleigh fading channel amplitude has
a non-linear relationship with the correlation coefficient
(ρ) of the corresponding complex Gaussian channel gain
as demonstrated in Eq. (4).

Characterization of the coverage probability of the backscatter
powered sensor node requires the PDF and CDF for the dyadic
fading channel, i.e., H = HfHb where Hf = ‖Gf‖2 and
Hb = ‖Gb‖2. The joint distribution of HfHb from the Eq.
(3) using the standard change of variables as:

fHf ,Hb (hf , hb; ρ) =
1

4ρ̃σ2
fσ

2
b

exp

(
− 1

2ρ̃

[
hf
σ2
f

+
hb
σ2
b

])

× I0

(
ρ
√
hfhb

ρ̃σfσb

)
, (6)

The PDF of H = HfHb is obtained as,

fH (h) =

∫ ∞
−∞

1

|t|
fHf ,Hb

(
t,
h

t
; ρ

)
dt, (7)

=
1

2ρ̃σ2
fσ

2
b

I0

(
ρ
√
h

ρ̃σfσb

)
K0

( √
h

ρ̃σfσb

)
, (8)

where K0(x) =
∫∞

0
cos(x sinh(t))dt,is the zeroth order mod-

ified Bessel function of second kind. Also, the assumption
E(Hf ) = E(Hb) = 1 implies that σ2

f = σ2
b = 1

2 . It
is obvious from Eq.(8) that obtaining the complementary
CDF which is required for subsequent coverage analysis is
quite involved. This significantly effects the tractability of the

analysis and therefore analysis even when considering a single
AP requires several folds of complex numerical integrations
as in [3]. To this end, this paper develops an alternative
performance characterization framework by developing a tight
approximation for the PDF in (8).

Proposition 1 [Montonicity of Product]: Let Iv and Kv
be the modified Bessel functions of first and second kind
of order v, then their product x Z⇒ Pv(x) = Iv(x)Kv(x)
is monotonically decreasing on the interval (0,∞). Also
following bounds hold from asymptotic Hankel expan-
sion

Iv(x) ∼ exp(x)√
2πx

(
1 + O(x−1)

)
, (9)

Kv(x) ∼
√
π exp(−x)√

2x

(
1 + O(x−1)

)
. (10)

Detailed proof on the monotonicity of the product Pv(x)
can be found in [12]. Also by simulating the PDF from Eq.
(8) it can be observed that Pv(x) decreases exponentially fast,
i.e., bounds obtained by using asymptotic expansion may be
sufficient with appropriate scaling. Consequently, Eq. (8) can
be written as

fH (h) =
2

ρ̃
I0

(
2ρ
√
h

ρ̃

)
K0

(
2
√
h

ρ̃

)
, (11)

≤ 1

2

exp
(
−2(1−ρ)

ρ̃

√
h
)

√
ρ
√
h︸ ︷︷ ︸

f̄H(h)

. (12)

The bound in Eq.(12) can be converted into a proper PDF by
selecting a normalization constant c such that

∫∞
0
f̄H (h) dh =

c−1. Consequently, the PDF of H = HfHb can be approxi-
mated as

PDF: faH (h) =
µ1

2

exp
(
−µ1

√
h
)

√
h

, (13)

CDF: F aH (h) = 1− exp
(
−µ1

√
h
)
, (14)

where µ1 = 2
1+ρ and consequently E(H) = 2/µ2

1 is the mean
of the distribution. Comparing Eq.(13) with Eq. (2) from [3],
it can be noticed that this approximation becomes precise as
ρ → 1. Computation of Kullback-Leibler (KL) divergence is
a well known method to quantify the difference between two
PDFs. Fig. 2 presents KL divergence between the exact PDF
(see (8)) and the approximation established in Eq. (13). The
intuitive conclusion that approximation error ε → 0 as the
ρ → 1 can be easily validated from the fig. 2 . Also it is
obvious that even whenHf andHb possess weaker correlation
( i.e., ρ→ 0) the approximation performs reasonably well (for
instance, refer to the fig. 2 for ρ = 0.2). It is worth highlighting
that the rate at which KL divergence decreases exponentially
fast with increasing ρ.

B. Coverage Probability for RF Backscatter WSN
In the following discussion, we will derive closed-form

bounds on the coverage probability for a backscatter SN by
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exploiting the approximations developed in the previous sub-
section. Due to ergodicity of the HPPP, it is sufficient to
characterize the performance of a typical link SN-AP link
[13]. Consequently, the coverage probability of an arbitrary SN
associated with the AP at the origin (without loss of generality)
can be defined using Eq. (1) as

pc (γth)
(a)
= ER


Pr



Γ︷ ︸︸ ︷
l2(r)HofHob∑

j 6=o∈ΠSN
l2(rj)HjfH

j
b

≥γth

︸ ︷︷ ︸
pc(γth|r)


, (15)

where (a) assumes that the operation of considered link is
interference limited, i.e. aggregate interference power is signif-
icantly larger than the noise variance, R is the random variable
which captures the distance between AP and its intended SN
with distribution: fR(r) = 2πrλAp exp

(
−λAPπr2

)
.

Proposition 2 [Coverage Probability]: The coverage
probability of a SN located at a distance r from the
transmitter can be upper-bounded as:

pc (γth| r) / exp
(
−λSNπµδ1γ

δ/2
th Γ(1− δ)E(Hδ)r2

)
,

(16)
where δ = 2/α and E(Hδ) = E(HδfHδb) and Γ(x) is
the Gamma function. The unconditional coverage proba-
bility can be quantified by deconditioning pc (γth| r) by
employing PDF of R as:

pc (γth) ≈ 1

1 + λ̃µδ1γ
δ/2
th Γ(1− δ)E(Hδ)

, (17)

where λ̃ = λSN/λAP is the average number of SNs per
AP.

Due to space limitations, we will not provide the complete
proof. The key idea behind the proof is summarized in
Appendix A. While we employ approximation for the CDF
to characterize the fading on the intended link between AP
and SN, this approximation is not required for the interfering
link as all we need is the joint moments of the dependent
exponential random variables E(Hδ) = E(HδfHδb). Middleton
in [7] derived the expression for the joint moments E(HnfHmb ),
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Probability.

which is presented in Chapter 9, Eq. (9.22). However, this
result is incorrect and for special cases such as n = m = 1,
it does not yield the results presented in Eq. (9.23) of the
same book. Since, detailed derivation is not provided, it is
difficult to establish the error. In this article, we derive an
expression for E(HnfHmb ) from the joint distribution (see Eq.
(6)) in Appendix B.

Proposition 4 [Joint Moments]: The joint moments
of correlated bivariate Exponential random variable with
correlation factor ρ can be computed as:

κH (n,m) = E
[
HnfHmb

]
,

=
ρ̃Γ(n+ 1)Γ(m+ 1)2F1(n+1,m+1,1;ρ2)

ΩnfΩ
m
b

,

= 2n+m
(
1− ρ2

)n+m+1
σ2n
f σ2m

b Γ(n+ 1)

× Γ(m+ 1)2F1

(
n+ 1,m+ 1, 1; ρ2

)
. (18)

where Γ(x) is the Gamma function and 2F1 (a, b, c; z) is
the Gauss hypergeometric function.

IV. RESULTS & DISCUSSION

In this section, we validate the developed statistical frame-
work for quantifying the coverage probability. We also briefly
explore the impact of different parametric variations on
the coverage probability. 1. Validation of the Developed
Statistical Framework: Fig. 3a corroborates the accuracy of
the bounds presented in Eq. (16) with the help of Monte Carlo
simulations. Monte Carlo simulation results are obtained by
simulating 103 realizations of ΠAP and fading channels for
each value of the desired SIR threshold (γth). As indicated
by the Fig. 3a, the developed bounds closely match with
the Monte Carlo simulations. It can be observed that the
coverage probability of SN decreases with increase in the
link distance (r) and density of sensor nodes (λSN ), where
the former is experienced due to the increased bi-directional
path-loss and later can be attributed to the increased aggregate
interference. 2. Average Number of SNs per AP: Fig.
3b depicts the unconditional coverage probability (from Eq.

2019 27th European Signal Processing Conference (EUSIPCO)
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(17)) against varying ratio λ̃ = λSN/λAP which effectively
captures the average number of SNs per AP. As demonstrated
in Fig. 3b, the average number of SNs which can typically
be supported for the desired SIR thresholds for a coverage
probability of 90% is around 10-20. As expected the coverage
probability decreases with increasing number of SNs per
AP due to interference aggregation. The effective number
of SNs per AP can be increased by introducing a medium
access control (MAC) mechanism on backscattering nodes.
As the SNs are passive devices, MAC implementation has
only finite degrees-of-freedom for exploitation. These include
polarization, channelization (through modulation of the period
of data waveform which derives load modulation) or random
ALOHA type scheduling. Extensive investigation of these
mechanism is deferred for a future study.

V. CONCLUSIONS

In this paper, we developed a statistical framework to
quantify the performance of backscatter communication based
low power wireless sensor network. In particular, we devel-
oped novel closed-form bounds to characterize the coverage
probability of SNs under dyadic Rayleigh fading channel and
spatial randomness in topology. Compared to the existing
literature, the developed bounds are simple and do not require
several folds of numerical integration for performance eval-
uation. The tightness of the bounds is verified using Monte
Carlo simulations. Lastly, we demonstrate that the developed
framework can be exploited to dimension a backscattering
based sensor network for the required QoS parameters.

APPENDIX A
UPPER-BOUND ON THE COVERAGE PROBABILITY

The upper-bound on conditional coverage probability can
be obtained by first computing the Laplace transform of the
interference which indicates that the interference has an α-
stable distribution and its PDF can be expressed as:

fI(x) =

∞∑
i=1

(−1)i+1Γ(1+iδ) sin(πiδ)

(
λSNπΓ(1−1/α)E(H1/α)

x1/α

)i
πxi!

.

(19)
The derivation follows a similar process to Chapter 3, Section
3.2 in [13] with modification of channel gains and path-loss
exponents. Now employing Eq. (14), the conditional coverage
probability can be expressed as:

pc (γth| r) = EI
[
Pr
{
H ≥ γthIl(r)−2

}]
,

=

∫ ∞
0

exp
(
−µ1

√
xγthl(r)−2

)
fI(x)dx. (20)

Eq. (20) is simplified to Eq. (16) by evaluation of the integral,
bounding one of the terms in intermediate steps, i.e. Γ(1 −
2δi) / Γ(1− δi) and then using exp(−x) =

∑∞
i=0

xi

i! .

APPENDIX B
DERIVATION OF JOINT MOMENTS

Employing the joint PDF from Eq. (6)., the (n,m) order
moment κH (n,m) = E

[
HnfHmb

]
can be computed as follows

κH (n,m) =

∫ ∞
0

∫ ∞
0

hnfh
m
b fHf ,Hb (hf , hb; ρ) dhfdhb.

(21)

Let Ωf =
(

2ρ̃σ2
f

)−1

and Ωb =
(
2ρ̃σ2

b

)−1
, then Eq. (21) can

be re-written as

κH (n,m) = ΩbΩf ρ̃

∫ ∞
0

hmb exp (−Ωbhb) (22)

×
∫ ∞

0

hnf exp(−Ωfhf )I0

(
2ρ
√
Ωbhb
√
Ωfhf

)
dhf︸ ︷︷ ︸

I1

dhb.

Now, exploiting the infinite series expression for the modified
Bessel function of first kind, I1 can be evaluated as

I1 =
∞∑
k=0

(
ρ2Ωbhb

)k
Γ(k + 1)Γ(k + 1)

Γ(n+ k + 1)

Ωn+1
f

. (23)

Substituting, Eq. (23) into Eq. (21)

κH (n,m) =
ρ̃

ΩnfΩ
m
b

∞∑
k=0

Γ(n+ k + 1)Γ(m+ k + 1)

Γ(k + 1)Γ(k + 1)
ρ2k.

(24)

Now using the definition of the rising factorial and the Guass
hypergeometric function results in Eq. (24) completes the
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