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Abstract—Structure learning is an active topic nowadays in
different application areas, i.e. genetics, neuroscience. Classical
conditional independences or marginal independences may not
be sufficient to express complex relationships. This paper is
introducing a new structure learning procedure where an edge in
the graph corresponds to a non zero value of both correlation and
partial correlation. Based on this new paradigm, we define an
estimator and derive its theoretical properties. The asymptotic
convergence of the proposed graph estimator and its rate are
derived. Illustrations on a synthetic example and application to
brain connectivity are displayed.

Index Terms—structure learning, conditional independence,
marginal independence, Hadamard product, soft-thresholding,
brain connectivity

I. INTRODUCTION

Finding relationships among a large number of random
variables is a difficult problem that has generated a substantial
interest in recent years. This is due to the large number of
application areas where relationships are important features
to extract. For example, in neuroscience, brain networks pro-
viding relationships between brain regions, have brought new
understandings on the brain mechanisms under a pathological
condition. Other examples can be found in genetics, medicine,
finance, social networks. Graphical representations of proba-
bilistic relationships have been extensively studied in machine
learning and statistics. In particular, the so-called Graphical
Models [11] are a way to represent probability density func-
tions (pdf) that makes explicit factorization properties of the
pdf and as a consequence helps in designing efficient inference
algorithms. Given a set of p variables Y = (Y1, Y2, · · ·Yp),
one important issue in practice, is therefore how to infer such
a graph structure from a n-sample of (Y1, Y2, · · ·Yp). The
appropriate procedure may of course depend on additional
assumptions on the joint pdf of the Yi’s and on the type
of relationships that is seek. Among the various dependence
measures, conditional dependence is the most frequent as it
is often seen as a more suitable concept to catch direct link
than standard dependence, referred to as marginal dependence.
Conditional independence of two variables Yi and Yj is defined
as the independence of these two variables after regressing out
the other variables. It is denoted by Yi ⊥ Yj |Y−(i,j) where
Y−(i,j) is the set of variables Y after removing Yi and Yj .

A graph G = (V,E) can then be constructed. The set of
nodes V corresponds to the p variables in Y , and the edge set
E ⊂ V × V is defined as follows

Yi ⊥ Yj |Y−(i,j) ⇔ (i, j) 6∈ E. (1)

We will refer to this graph as a partial correlation graph.
Similarly, marginal independence of two variables Yi and Yj

is the standard probabilistic independence denoted by Yi ⊥ Yj .
A graph can also be defined as,

Yi ⊥ Yj ⇔ (i, j) 6∈ E. (2)

We will refer to this graph as a correlation graph. The two
dependence measures and therefore the two graphs are not
equivalent nor one is included in the other (eg. [8]). This is
illustrated in Figure 1. Figure 1 (a) illustrates the so-called
common effect phenomenon or v-structure. Using the Bayesian
network representation, this graph corresponds to the joint
distribution p(x1, x2, x3) = p(x3|x2, x1) p(x1) p(x2) for
which it is easy to check that X2 and X1 are independent
but not conditionally independent. The correlation graph is
the one to use in Figure 1 (a) to find the v-structure, while
a partial correlation graph would give a triangle for this
pdf. Conversely for the pdf represented in Figure 1 (b),
p(x1, x3, x4) = p(x3|x1) p(x4|x1) p(x1), X3 and X4 are
marginally dependent but not conditionally independent. The
partial correlation graph is the one to use while the corre-
lation graph would be a triangle. More generally, for more
complex graphs that would mix the two phenomenons, neither
covariance graphs nor precision graphs would express our
understanding of the variables relationships in a satisfying
manner (see Figure 1 (c)). However, the intersection of the
two graphs seems promising in structure learning.

In this work, we therefore propose to consider simulta-
neously both conditional and marginal dependencies and to
address the problem of estimating them from observed data.

If the joint pdf of (Y1, Y2, · · ·Yp) is Gaussian, i.e. Y ∼
Np(µ,Σ), then conditional independence can be read directly
from the precision matrix Θ = Σ−1 of the pdf. This provides
a relatively straightforward way to assess conditional inde-
pendencies from a data sample, by estimating the empirical
precision matrix. Similarly, marginal independence can be
read on the covariance matrix Σ which can also be estimated
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Fig. 1: Illustration of the common cause, common effect
phenomena and the combination of common cause and com-
mon effect phenomena where neither correlation nor partial
correlation can retrieve the real structure of the graph. This
problem is a standard issue encountered in directed graphs
exploration.

empirically. Most popular approaches resort to penalized like-
lihood estimation with the idea of favoring sparse matrices.
Reviews of recent results including methods adapted for high-
dimensional setting and heavy-tailed distributions can be found
in [6], [8]. Starting with graphical lasso (glasso) [10], penal-
ized likelihood approaches based on L1-norm of the precision
matrix Θ have been increasingly popular [1], [23]. Several es-
timators have been studied based on the use of Dantzig selector
[22], CLIME algorithm [5] or thresholding operator [19]. In
contrast to most other proposals, the estimator proposed in [19]
has a closed-form solution as long as it is invertible. Similarly,
[3] uses a glasso approach for the covariance matrix while
recent progress on this problem has been made in [18] with a
new optimization method based on coordinate descent. Other
approaches [2], [14] consider generalized thresholding of the
covariance matrix to get a sparse estimate. These methods have
good theoretical properties and are computationally efficient.
Finally, recent developments based on graph signal processing
have brought new perspectives on this problem [7], [13]. Solu-
tions are based on the study of eigenvalues and eigenvectors of
Laplacian matrix using either correlation or partial correlation
as inputs.

However, to our knowledge the existing methods use either
Θ (conditional dependencies) or Σ (marginal dependencies) to
infer the graph. The purpose of the present work is to develop
a method to construct a graph where the absence of an edge
between Yi and Yj corresponds to the absence of one of the
properties: partial correlation or correlation. The graph is then
defined by:

Yi ⊥ Yj |Y−(i,j) or Yi ⊥ Yj ⇔ (i, j) 6∈ E. (3)

This paper is organized as follows. We briefly give an
overview of the related work. A new definition of the structure
of the graph using Hadamard product is introduced in section
III. Theoretical properties of the proposed estimator are de-
rived in section IV and an illustration is presented in section
V. Finally, a validation on real data is described in section VI.

II. PRIOR WORK

Despite the very large number of existing papers dealing
with conditional independence (i.e. classical Gaussian graphi-
cal models), there are few papers studying the common cause
- common effect problem.

Using specific conditions on sparsity, [9] showed that posi-
tions of zeros in partial correlation and correlation matrices are
equal. As a consequence for these conditions, both dependence
measures, partial correlation or correlation, are estimating the
same graphs. However, hypotheses on sparsity are hard to
check, and we argue that they are too restrictive in many
applications.

In the framework of Bayesian networks, heuristic ap-
proaches have been developed to iteratively decompose the
graph and to find the v-structures. In [21] the authors propose
to infer the dependence structure after identifying subset of
nodes with a possible v-structure. This approach may be very
costly as it is not providing an analytic solution. Alternative
approaches based on graph signal processing tend to propose
an optimization framework independent of the input matrices
correlation or partial correlation. In [16], the authors derive a
criterion based on eigenvectors decomposition of covariance
matrix. Its minimization under the constraint of sparsity is
achieved corresponding to either correlation or partial corre-
lation. Using this method it is possible to retrieve the two
examples given in Fig. 1 (a) or Fig. 1 (b). However for Fig.
1 (c), this method will not give the correct solution because
of the combination of the two phenomena.

III. HADAMARD STRUCTURE LEARNING

In this section, we describe a novel method for defining
graphical models in the way that the absence of edge between
two nodes means that either the correlation of these variables
equal to zero or the partial correlation of these variables
given the rest equal to zero. The idea is to incorporate both
correlation matrix R = (rij) and partial correlation matrix
Γ = (γij) in one product. We focus on Hadamard product
for its tractability and ability to reveal the absence of at least
one of the properties among partial correlation or marginal
correlation: H = R ◦ Γ, H = (hij). Therefore, hij have zero
on the place ij if at least one of rij and γij equals to zero.
The graph (3) is then defined by zeros of matrix H and we
call this graph a Hadamard graph. The edges of this graph
correspond to non-zeros values for both partial and marginal
correlations.

As an example of the application of this new definition
on real data, we used brain data using functional Magnetic
Resonance Imaging (fMRI). The details of the preprocessing
of the data is explained in [17]. Figure 2 is displaying the
obtained correlation graph (a), partial correlation graph (b) and
Hadamard graph (c). Each graph is obtained by defining 40
edges corresponding to the first 40th highest absolute values of
respectively R (Figure 2 (a)), Γ (Figure 2 (b)) and R◦Γ (Figure
2 (c)). Different positioning of the edges on the structure of
the brain are obtained. Correlation graph is highlighting more
short-range connections (clustering of regions close in space),
whereas partial correlation is capturing long-range connections
(connection of regions that are far from each other). These two
features can be related to the cost-efficiency trade-off of the
brain [4]. It is assumed that the brain networks are constructed
in order to both optimize the efficiency (facility to connect
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Fig. 2: Structure learning on brain graphs using fMRI data: (a)
correlation graph; (b) partial correlation graph; (c) Hadamard
graph. Short-range connections are prevalent in (a) whereas
edges in (b) are mostly long-range connections. (c) is a
combination of (a) and (b).

any two regions of the brain), and the cost (the cost to build
structural connections). The Hadamard graph can be seen as
an illustration of this trade-off where both short-range and
long-range connections are present in the brain.

IV. ESTIMATION OF HADAMARD GRAPHS

For now, for simplicity, we assume that the sample correla-
tion matrix R̂ is invertible. To recover the Hadamard product
parameter H we propose the following estimator which allows
us to regularize the number of connections defined as the non-
zero elements in H:

arg min
H
‖H‖1,off

s.t.: |H − Ĥ|∞,off 6 λ, (4)

where Ĥ = R̂ ◦ Γ̂ and Γ̂ is the estimator of the partial
correlation matrix obtained by normalizing R̂−1, for matrix
A: |A|∞.off = maxi6=j |Aij |, ‖A‖1,off =

∑
i6=j |Aij |. Note

that similar approaches were considered in [19] and [20]
but for the estimation of the precision and covariance ma-
trices respectively. Optimization problem (4) is decomposable
into independent element-wise sub-problems, where each sub-
problem corresponds to soft-thresholding of H [20]. Thus,
the estimator (4) is available in closed-form: Ĥλ = Tλ(Ĥ),
where [Tλ(u)]ij = sign(uij)max(|uij |−λ, 0). Now we derive
theoretical properties for the thresholding of the Hadamard
product.

We consider the following uniformity class of ”approxi-
mately sparse” correlation matrices invariant under permuta-
tions presented in papers [2] and [14]:

Uτ (q0, co(p)) =
{
R,

p∑
j=1

|rij |q0 ≤ c0(p) ∀i
}

for 0 ≤ q0 < 1. When q0 = 0,
∑p
j=1 |rij |q0 =

∑p
j=1 1(rij 6=

0) which corresponds to the class of sparse matrices (1
means the indicator function). The dependence of c0(p) on the
dimension p allows to be less restricted on the sparsity [14].
We assume that the partial correlation matrix also belongs to

the class of ”approximately sparse” matrices invariant under
permutations:

Uτ (q1, c1(p)) =
{

Γ,

p∑
j=1

|γij |q1 ≤ c1(p) ∀i
}

for 0 ≤ q1 < 1. Then the Hadamard product of the corre-
lation and partial correlation matrices is also in the class of
”approximately sparse” matrices:

Proposition 1. The Hadamard product H of correlation
matrix R in the class Uτ (q0, co(p)) and partial correlation
matrix Γ in the class Uτ (q1, c1(p)) also belongs to the class
of ”approximately sparse” matrices Uτ (q2, c2(p))
for 0 ≤ q2 < 1.

Proof. Let us assume q2 = 1
2min(q0, q1) and c2(p) =

max(c0(p), c1(p)). Then for i, 1 ≤ i ≤ p,
p∑
j=1

|hij |q2 =

p∑
j=1

|rijγij |q2 =

p∑
j=1

|rij |q2 |γij |q2

≤

√√√√ p∑
j=1

|rij |2q2

√√√√ p∑
j=1

|γij |2q2 ≤

√√√√ p∑
j=1

|rij |q0

√√√√ p∑
j=1

|γij |q1

≤ (c0(p))1/2(c1(p))1/2 ≤ max(co(p), c1(p))

This means that the Hadamard product belongs to

Uτ (q2, c2(p)) =
{
H,

p∑
j=1

|hij |q2 ≤ c2(p) ∀i
}

for some 0 ≤ q2 < 1.

The following theorem provides the convergence rate for
Tλ(Ĥ) in the matrix operator norm, for matrix A: ‖A‖2 =
λmax(AAT ), where λmax(AAT ) represents the largest eigen-
value of matrix AAT .

Theorem 1. Suppose the distribution of the data is Gaussian
with Hadamard product H = R ◦ Γ. Then, uniformly on
Uτ (q2, c2(p)), for sufficiently large M ′, if λ = M ′

√
log p
n and

log p
n = o(1), then:

P
[
‖Tλ(Ĥ)−H‖ < c2(p)

( log p

n

)(1−q2)/2]
≥ 1− εn,p, (5)

where εn,p is a deterministic sequence that decreases to zero
as n, p→∞.

Proof. By examining the proof of Theorem 1 in [14], the only
property we need to prove is the following:

P
[
max
ij
|hij − ĥij | <

log p

n

]
≥ 1− εn,p (6)

max
ij
|hij − ĥij | = max

ij
|rijγij − r̂ij γ̂ij | ≤

≤ max
ij
| − r̂ij γ̂ij + r̂ijγij |+ max

ij
| − r̂ijγij + rijγij | =

= max
ij
|r̂ij(γij − γ̂ij)|+ max

ij
|γij(rij − r̂ij)| ≤

≤ max
ij
|r̂ij
∣∣max

ij

∣∣γij − γ̂ij∣∣+ max
ij
|γij |max

ij
|rij − r̂ij |

2019 27th European Signal Processing Conference (EUSIPCO)



Applying theorem 1 [14] to each of the two terms of the right-
hand side of the above inequality finishes the proof.

Remark 1. Sample covariance (correlation) matrices are not
invertible unless the sample size n is larger than the number
of variables p and we cannot compute a partial correlation
matrix using the sample correlation matrix R. This issue
can be solved using the thresholding operator of sample
correlation matrix, i.e. Γ can be derived from [Tν(R̂)]−1.
This idea was implemented in [20] and under additional
assumptions on precision matrix it is shown that this estimator
is well-defined and well-behaved.

V. ILLUSTRATION ON SIMULATED DATA

We illustrate the behaviour of soft-thresholding operator of
Hadamard product of estimated correlation matrix and partial
correlation matrix in terms of the recovering of the sparsity
pattern. In order to confirm the usefulness of our framework,
we construct an example where neither correlation graph nor
partial correlation graph could reconstruct the correct structure.
First, we simulate two positive definite matrices R1 and R2

of size 100 each using models 1 and 2 respectively. Model
1: ”Triangular” correlation, rij = (1 − ((|i − j|)/k))+, for
k = [p/4]. Model 2: inverse of ”Triangular” correlation.

(a) (b) (c)

Fig. 3: Adjacency matrix of (a) correlation, (b) partial corre-
lation and (c) Hadamard matrix.

Then we take the true correlation R matrix of size 200
as a block-diagonal matrix of R1 and R2. Model 1 is a
standard test case in the literature. The adjacency matrices
of the true correlation matrix R, partial correlation matrix
and their Hadamard product are presented in Figure 3. We
generated n = 300 independent and identically distributed p-
variate normal random vectors with mean 0 and correlation
matrix equal to R. The ability to recover sparsity patterns of
the true Hadamard product was evaluated via ROC curves.

We compare two methods: soft-thresholding of Hadamard
product Ĥ, i.e. Tλ(Ĥ) = Tλ(R̂ ◦ Γ̂), where R̂ is the sample
correlation matrix and Γ̂ is the estimator of the partial correla-
tion matrix obtained by normalizing the matrix R̂; Hadamard
product of soft-thresholding of correlation matrix R̂ and soft-
thresholding of partial correlation matrix Γ̂, i.e. Tλ(R̂)◦Tλ(Γ̂).
The whole process was run 50 times. The corresponding ROC
in Figure 4 shows that result for Tλ(Ĥ) outperforms the result
for Tλ(R̂) ◦ Tλ(Γ̂) for the FPR greater then 6%.

VI. VALIDATION ON REAL DATA

In order to validate our approach on real data, we tested
our graph structure learning approach on brain signals using

Fig. 4: ROC curve representing the performance of Tλ(R̂) ◦
Tλ(Γ̂) and Tλ(Ĥ). The ROC curve is created by plotting the
true positive rate (TPR) against the false positive rate (FPR) at
various threshold settings λ. For any estimated matrix Mλ =
(m(λ)ij) and the true Hadamard matrix H = (hij) TPR and
FPR are defined as: TPR =

#{(i,j):m(λ)ij 6=0 and hij 6=0}
#{(i,j):hij 6=0} and

FPR =
#{(i,j):m(λ)ij 6=0 and hij=0}

#{(i,j):hij=0} .

fMRI. This provides brain connectivity networks that are used
in the identification of cognitive impairments for example. As
ground truth for evaluating brain connectivity networks is not
available, we used test-retest datasets (see [17] for details)
to quantify the performances of the different approaches. 100
subjects were scanned twice in two different sessions. The
reliability of each structure learning approach is evaluated
by measuring the difference of graph properties for the two
sessions obtained for the same subject. For each datasets,
we compute a graph using four different approaches: R̂, Γ̂,
Ĥ = R̂ ◦ Γ̂ and partial correlation matrix obtained from
glasso algorithm; the tuning parameter λ in glasso algorithm
for each subject in each session was obtained by cross-
validation with k = 5 folds. In order to produce a fixed
number of edges, we apply the soft-thresholding for each of
the matrix. Thus we obtain an adjacency matrix that defines
an unweighted graph for each subject in each session. We
compute a graph metric called ”global efficiency” which is
related to the communication efficiency of a node i with all
other nodes (detailed information can be found in [15]). For
each graph we obtain one value of this parameter. Accordingly,
there are 200 values of global efficiency (one per each subject
in each session) for fixed value of percentage of edges in the
graphs. To evaluate the reliability of each method we compute
intraclass correlation coefficient (ICC) which is based on
the comparison of the within-subject and between-subject
variability. The Figure 5 represents the scheme of computing
the ICC for fixed number of edges. ICC is close to 0 when
the reliability is low, and close to 1 when the reliability is high.
Note that ICC may take negative values when the variance
within subjects is larger than between subjects. This is due
to statistical errors given a particular dataset and should be
considered as a non reliable estimation.

The results are shown in Figure 6. It is clear that methods
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Fig. 5: The computation of ICC for global efficiency for fixed
number of edges equal to 200. E0

1 , . . . E
0
100, E

1
1 , . . . , E

1
100 are

values of global efficiency for each subject in both sessions;
sb is the variance between subjects, sw is the variance within
subjects in 2 sessions; ICC = (sb − sw)/(sb + sw) (see [17]
for more details about computing sb and sw).

based on partial correlation are the least reliable. Using glasso
improves the reliability however correlation approaches are
still better. For this datasets, Hadamard approach gives similar
results as sample correlation, which means that brain connec-
tivity networks seem to be better characterized by marginal
dependence. The highest value of ICC is obtained when using
Hadamard graphs for 30% of edges present in the graphs.
When there are no hypotheses on the dependence structure of
the graphs, these results show that Hadamard graph is a good
trade off for structure learning.

Fig. 6: Reliability measures using ICC for global efficiency
for the sample correlation matrix R̂, the partial correlation
matrix Γ̂ = R̂−1, Hadamard product Ĥ and partial correlation
matrix obtained from glasso algorithm

VII. CONCLUSION

We introduce a new graph construction method taking
into account both conditional and marginal independences.
We derive a convergence bound for the proposed estimator
and show on synthetic data the ability of the estimator to
recover the sparsity patterns of the true matrix. Our approach
was applied on brain signals and showed better results than

classical correlations or partial correlations. A nice advantage
of our method is its simplicity where we only need to choose
the estimation procedure for correlation and partial correlation
matrices. In perspective, the estimation procedure for these
matrices can be chosen to improve robustness to non-Gaussian
data, for example with Kendall tau. Also, it is possible to use
estimation based on shrinkaging of covariance matrix for high-
dimensional case [12].
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