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Abstract—This paper proposes a new appliance-driven selec-
tion of sampling frequencies for improving the energy disaggrega-
tion performance in non-intrusive load monitoring. Specifically,
the methodology uses a machine learning model with parallel
device detectors and optimized device dependent sampling rates
in order to improve device identification. The performance of the
proposed methodology was evaluated on a state-of-the-art base-
line system and a set of publicly available databases increasing
performance up to 6.7% in terms of estimation accuracy when
compared to the baseline energy disaggregation setup without
device dependent sampling rates.

Index Terms—Non-intrusive load monitoring (NILM), Energy
Disaggregation, Device Classification.

I. INTRODUCTION

In the last decades the need for accurate and fine grained
monitoring of electrical energy consumption within residential
and industrial environments has become a crucial issue. Rising
energy consumption needs, the establishment of smart grids
and demand management [1], as well as the fluctuation of
power generation due to an increasing percentage of re-
newable energies enhancing these issues [2]. These changes
are challenging for network operators and power generation
facilities, since power-needs are becoming less predictable and
unstable [3]. Furthermore, with the ability to provide real-time
information through smart-metering and determining detailed
household energy consumption, consumer privacy concerns
are arising and energy data protection becomes prominent [3].
To address those challenges detailed, cost-effective and privacy
concerned analysis of power consumption on device level is
necessary [4].

Energy disaggregation is the task of extracting energy con-
sumption at appliance level based on one or multiple measures,
trying to identify the device specific operating patterns from
the aggregated measure [5]. When using one sensor only
this task is referred to as Non-Intrusive Load Monitoring
(NILM ) as introduced by [6]. NILM formulates the energy
disaggregation as a single channel source separation problem,
where the goal is to find the inverse of the aggregation function
to determine the per device consumption by a cost effective
and privacy conserving single channel measurement at the
main power inlet of households and buildings. In general this
problem is highly under-determined when using one sensor
only, therefore either knowledge-based [7], [8] or data-driven
[9], [10] models are used to find the best separation.

Solving the NILM problem for data-driven approaches
can be briefly described as follows: pre-processing of the
aggregated signal (e.g. filtering or sampling), framing (e.g.
constant or variable frame length/edge detection [11], [12]),
feature extraction and classification as illustrated in Fig. 1. For
training the classifier a variety of public available databases
with a wide range of sampling frequencies (fs) are used. These
databases can be categorized into Low Sampling Frequencies
(LSF ) for fs ≤ 5Hz and High Sampling Frequencies (HSF )
for fs ≥ 1kHz respectively [13].

Current NILM methods based on probabilistic models and
machine learning (ML) usually train one classifier/detector
(e.g. k-Nearest-Neighbors (KNNs) [14], Artificial Neural
Networks (ANNs) [15] or Support Vector Machines (SVMs)
[16]) with a set of features extracted from the aggregated
raw data. The selection of features depends on the sampling
frequency, hence steady state features (e.g. active or reactive
power) are used in case of LSF [4], [13] and transient
features (e.g. harmonic spectrum or transient energy) in case
of HSF [15] [17]. The choice of frequency and features aims
to optimize the overall detection accuracy.

In this study device dependent sampling frequencies are
introduced in order to increase device detection Accuracy
(ACC) and reduce the Root-Mean-Square-Error (RMSE) for
energy disaggregation. The rest of the paper is organized as
follows: In Section II the proposed signal processing archi-
tecture using appliance-driven sampling rates is presented. In
Section III the experimental setup is described while the results
of the experiments are given in Section IV. The paper is
concluded in Section V.

Data
Pre-
proc Framing Feature

Extraction
Classifier

Device
Labels

Appliance
Feature

Database

Feature
training
sequenceDatabase for

training the
ML classifier

Fig. 1. Baseline machine learning based system for non-intrusive load
monitoring. (Look-up-table is denoted as LUT )

II. PROPOSED ARCHITECTURE

NILM energy disaggregation can be formulated as the task
of determining the power consumption on device level based
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on the measurements of one sensor, within time windows
(frames or epochs). Specifically, for a set of M − 1 known
devices each consuming power pm with 1 ≤ m ≤ M , the
aggregated power Pagg measured by the sensor will be

Pagg = f(p1, p2, ..., pM−1, g) =
M−1∑
m=1

pm + g =
M∑

m=1

pm (1)

where g = pM is a ‘ghost’ power consumption noise usually
consumed by one or more unknown devices. In NILM the
goal is to find estimations p̂m, ĝ of the power consumption of
each device m using an estimation method f−1 with minimal
estimation error and P̂M = ĝ, i.e.

P̂ = {p̂1, p̂2, ..., p̂M−1, ĝ} ← f−1(Pagg) (2)

s.t. argmin
f−1

{(Pagg −
M∑

m=1

p̂m)2}

The architecture presented in this paper proposes one de-
tector per device with an additional device dependent look-
up-table (LUT ) for detection thresholds (Th) and sampling
frequencies (FS) as shown in Fig. 2. Thresholds are used for
ML techniques performing regression (e.g. ANN ) producing
a device-specific detection score (i.e. a probability for the
existence of that device). The classification stage is followed
by a mapping of the detected devices to one of their corre-
sponding states of operation similar used in [18]–[22]. The
novelty of the proposed architecture with respect to the state-
of-the-art signal processing is the appliance-driven selection
of optimal sampling frequencies and thresholds for each of
the M devices.
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Fig. 2. Block diagram of the NILM architecture using optimal per device
frequency selection for appliance-driven device detection

To find the best frequency for the mth device in a specific
set of training samples Ytrain(fs, Th) and their correspond-
ing ground-truth labels Xtrain(fs, Th) the device dependent
frequency fm

s must be optimized according to Eq. 3, while
thresholds are optimized according to Eq. 4. In Eq. 3-4 fm

s,opt

is the optimal frequency and Thm
opt is the optimal threshold

for the mth device of a specific database, CL is any machine
learning classifier (e.g. KNN , ANN or SVM ) and PF
is a performance metric (e.g. ACC or RMSE) measuring
performance on the training samples Ytrain and Xtrain.

fm
s,opt = argmax

fs

PF [CL(Ytrain(fs), Xtrain(fs))] (3)

Thm
opt = argmax

Th
PF [CL(Ytrain(Th), Xtrain(Th))] (4)

The extracted set of optimal frequencies Fs = f1. . .M
s,opt and

threshold Th = Th1. . .M
s,opt for each device depends on the

chosen performance measure. Classification accuracy (ACC)
can be chosen to identify working patterns and time dependent
device behaviour. Estimation accuracy EACC according to
[23] and RMSE can be selected to assign energy between
a set of devices identifying the distribution of energy within a
household under consideration of the per device drawn power
at each instant in time [24].

The selection of optimal sampling frequency for each device
affects the devices’ power consumption signature in the time
domain as well as the device’s representation in the feature
space. A characteristic example of the effect of different
sampling periods Ts on the aggregated active power Pagg

is illustrated in Fig. 3. As can be seen in Fig. 3 transient
events (mainly power spikes with short duration caused by
appliances as kettles or boilers) are getting eliminated by
increasing the sampling period (marking 1 in Fig. 3), while
devices with steady-state working routines (as for example
fridges or freezers) are not affected by the down-sampling
(marking 2 in Fig. 3).

Literature already reports many approaches utilizing a wide
variety of different sampling frequencies in the range of 0.1Hz
up to 10kHz, showing that the choice of sampling frequency,
features and method of edge-detection are having a significant
influence on overall detection accuracy [14], [25]. However, to
best of our knowledge, device specific sampling frequencies
have not been reported in literature. Therefore the appliance-
driven sampling rate selection is evaluated.

III. EXPERIMENTAL SETUP

The NLIM architecture with the appliance-driven sampling
presented in Section II was evaluated using the datasets and
classification algorithms presented below.

A. Datasets

For testing and training three public available databases
namely, ECO [24], UK-DALE [26] and REDD [23] are
evaluated, each of them consisting of different datasets con-
taining power consumption recordings from different houses.
Only the ECO-3 datasets was excluded as it contains only the
aggregated signal and not the power consumption on device
level making it impossible to train the model of the proposed
architecture. Common in all three databases is their low sam-
pling period (from 1sec to 6sec) and the consideration of active
power samplings only. Furthermore all three databases were
recorded within the last decade making them representative
for nowadays households in terms of monitored devices [23],
[24].

In this setup only active power samples from the aggregated
signal Pagg were used including the ghost power consisting
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Fig. 3. Example of the influence of down-sampling on power consumption signatures in the aggregated signal

of unknown devices and the interference between devices on
the same power line. Further no artificial aggregated data was
created by selecting a subset of appliances and summing their
power consumption in order to evaluate performance in real
conditions as proposed in [27].

B. Pre-processing and Feature Extraction

During the pre-processing the active power samples from
the aggregated signal were framed with a constant frame
length of nframe = 10 samples per frame and a 50% overlap
(i.e. 5 samples) between respective frames while features are
calculated for each frame respectively. For every frame mean
value, standard deviation, Root-Mean-Square (RMS) value
and peak-to-rms value were calculated and chosen as features
for classification. In detail mean value and RMS value were
chosen to incorporate steady-state appliance signatures and
standard deviation as well as peak-to-rms value to account
for changes in appliances states [28]. Furthermore no pre-
processing (e.g. device specific filtering or interpolation) was
used to prevent possible effects and interferences from the
down-sampling. As classifier a 5-NN nearest neighbour tech-
nique similar as in [14], [29] was implemented and devices
with power consumption of less than 25W were excluded
from classification and added to the ghost power. For the
purpose of comparability each model was trained with the
sampling frequency the database was recorded (Ts,ECO = 1s,
Ts,UK−DALE = 6s, Ts,REDD = 3s). In order to avoid
overlap, each dataset was equally split into two subsets, one for
training and one for evaluating the proposed architecture. To
prevent interpolation all database were down-sampled with a
set of constant factors ndown = [1, 2, 5, 10, 20] and optimal
sampling frequencies for each device were stored during
the training phase. The testing was carried out selecting the
optimal sampling frequency according to Eq. 3 separately for
each device.

IV. EXPERIMENTAL RESULTS

All experimental results were generated with the same
baseline system as described in Section IV. Classification
accuracy was evaluated in terms of percentage of a device to be
working or not (Eq. 5), hence binary classification was applied
and every device was modelled as one-state device only. In Eq.
5 TP are the true positives, TN are the true negatives, FP are
the false positives and FN are the false negatives. RMSE and
EACC (Eq. 6 and Eq. 7) were evaluated taking into account
the estimated power p̂mt and the ground-truth consumption pmt
for the mth device, where T is the number of frames and M
the number of devices. Since equidistant sampling is applied
Eq. 6 and Eq. 6 are also a measure of assigned energy.

ACC =
TP + TN

TP + TN + FP + FN
(5)

RMSE =

√√√√ 1

T

T∑
t=1

(p̂mt − pmt )2 (6)

EACC = 1−
∑T

t=1

∑M
m=1 |p̂mt − pmt |

2
∑T

t=1

∑M
m=1 |pmt |

(7)

Experimental results were determined in three steps and
results are shown in Table I and Fig. 4 respectively. At first
the ACC, EACC and RMSE values were calculated for
every dataset and every device using the sampling frequency
at which the database was recorded. As a second step the
sampling frequency was optimized according to Eq. 3 and
the device detectors were updated with the optimal thresholds
according to Eq. 4. Finally the performance with the optimal
sampling frequency for each device was determined.

In Table I the column ’Base’ gives the per dataset perfor-
mances for the base sample frequency and the column ’Opt’
gives the per dataset performance for the specific optimal
sampling frequency respectively. As shown in Table I choosing
the optimal device sampling frequency improves classification
accuracy, estimation accuracy and root-mean-square-error in
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TABLE I
ENERGY DISAGGREGATION PERFORMANCE IN TERMS OF ACC , EACC

AND RMSE VALUES FOR DIFFERENT DATASETS (UK-DALE IS
LABELLED AS UK) USING THE SAMPLING FREQUENCY OF THE DATASET

(’BASE’) AND THE OPTIMAL DEVICE DEPENDENT SAMPLING FREQUENCY
(’OPT’)

Dataset ACC in [%] EACC in [%] RMSE
Base Opt Base Opt Base Opt

ECO-1 86.8 87.4 60.3 67.0 10.6 9.5
ECO-2 89.3 89.9 54.6 59.4 10.0 9.3
ECO-4 82.5 83.8 61.7 64.0 37.0 36.1
ECO-5 90.0 90.6 68.9 69.9 17.5 17.0
ECO-6 91.9 92.2 68.0 70.4 9.0 8.7
UK-1 97.8 97.9 74.7 77.6 4.4 4.0
UK-2 90.5 91.0 66.5 67.8 18.3 17.6
UK-3 96.9 97.2 52.5 58.9 45.0 42.3
UK-4 89.4 90.6 56.7 59.9 24.4 23.2
UK-5 89.6 90.7 64.4 67.5 11.5 11.0
REDD-1 92.0 92.6 62.2 68.7 13.4 12.5
REDD-2 97.5 97.5 71.9 73.0 7.0 6.6
REDD-3 91.6 92.4 62.1 67.6 15.1 13.8
REDD-4 91.9 92.5 68.0 69.6 8.1 7.7
REDD-5 87.7 89.4 55.9 57.9 27.3 25.6
REDD-6 93.7 94.4 68.4 71.1 23.4 21.6

all evaluated dataset when selecting the optimal sampling
frequency for each device. The improvements are up-to 1.7%
for ACC values, up-to 6.7% for EACC values and up-to
11.5% for RMSE values.

As shown in Fig. 4 reducing the sampling frequency max-
imizes both the EACC and the RMSE for the majority of
the evaluated devices. In detail Fig. 4 illustrates devices with
noticeable change of EACC and RMSE scores with respect
to different sampling frequency values, namely the dryer,
washing machine (WM ), freezer and fridge. It also illustrates
devices with no significant improvement such as the kettle,
stereo, laptop and the ghost-devices. The improvements in case
of the fridge and the freezer are due to their iterative working
routine which is unchanged for days or weeks, since they
are never manually turned off completely. In this case down-
sampling does not disrupt this working routine pattern or the
appliance signature in the feature space, while it eliminates ap-
pliances working in parallel increasing the detection accuracy
for the fridge and the freezer. In general, reducing the sampling
frequency improves detection accuracy for medium power
consumption devices with iterative working routines since their
appliance signatures become more prominent in the feature
space through a reduction of other devices working in parallel.
The washing-machine or the dryer show improvements as
well, as these devices operate in cycles (repeated washing or
heating cycles) as well. In contrast to the fridge and the freezer
the operating cycles of the WM and dryer are in the order
of hours thus only marginal down-sampling does not affect
those cycles. For devices with none-repetitive patterns (e.g.
the electronic devices or ghost power) or for devices having
single events with huge power peaks in the order of seconds

(e.g. boiler or kettle) no significant improvement was found.
The sampling frequency dependent EACC and RMSE scores
for eight different devices are illustrated in Fig. 3.
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Fig. 4. EACC and RMSE scores for eight devices of the ECO database
for different sampling period values

As shown in Fig. 4 both EACC and RMSE values are
affected by changing the sampling period. There is an absolute
performance increase for the devices in the left column,
since the estimation accuracy is increasing and the root-
mean-square-error is decreasing inverse proportionally. Further
the fridge and the freezer (similar devices) show similar
patterns with an optimal sampling period at approximately
Ts,opt = 10s, while same holds for the dryer and the washing
machine with an optimal sampling period at approximately
Ts,opt = 5s. The larger optimal sampling period for fridge and
freezer is due to their endless working routine (only manual
shut-down) while dryers and washing machines operate in the
order of hours. Further all devices show drastic performance
decrease with over-excessive down-sampling.

V. CONCLUSION

This paper presents an appliance-driven selection of optimal
sampling frequency to improve energy disaggregation in non-
intrusive load monitoring. The proposed methodology leads
to optimal device detection accuracies, estimation accuracies
and RMSE values independent of the sampling frequency
at which the database was recorded. The presented approach
works with a state-of-the-art NILM baseline system with
optimal device dependent sampling frequencies. Average pre
database improvements for estimation accuracy are up to 6.7%
and RMSE values are decreasing up to 11.5%. Similar results
could be found in all three tested database, with three different
base sample frequencies.
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