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ABSTRACT
This paper tackles a compressed sensing problem with the
unknown signal showing a flexible block sparsity structure,
where flexible means that blocks of nonzero elements have
no predetermined positions and only their minimum length
is known. By capitalizing on the Minkowsky functional,
the related support recovery problem is written in terms of
a new vector norm that outperforms the classic l1 norm
in describing the considered sparsity structure. Also, the
minimum number of measurements that are needed for
perfect reconstruction is estimated by the Gaussian-width
analysis of the new norm.

I. INTRODUCTION
Big data mining applications and massive deployments

of sensing devices, as well as other large dimensional
problems, often require dealing with a huge number of
unknown variables. In this context, reducing the number of
meaningful parameters by introducing a sparsity assumption
has proven to be a valid approach [1]. Indeed, besides
reducing computational and storing requirements, models
with a reduced number of significant parameters are usually
much easily understood and manipulated.

As an example, take the classical linear model

y = Φx+ η (1)

where signal y ∈ Rn is a noisy observation of the original
(unknown) signal, x ∈ RM , through measurement matrix
Φ ∈ Rn×M . The noise vector is denoted by η ∈ Rn. When
the signal is undersampled, that is when n < M , reconstruc-
tion of x from y is generally impossible. Nevertheless, if we
can assume that x is ς-sparse (i.e., it has only ς nonzero
entries), then Compressed Sensing (CS) results [2], [3], [4],
[5] ensure that a robust estimate x̂ of x (that is with a
negligible error ‖x− x̂‖) can be obtained as long as matrix
Φ is properly chosen. For instance, this is true for all random
matrices with i.i.d. normalized entries such that

n > 2ς log
(

eMς−1
)
. (2)
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Moreover, x̂ is a solution to

x̂ = arg min
x
‖x‖lM1 s.t. ‖y − Φx‖ln2 ≤ δ

where δ is an upper bound on the ln2 norm of the noise η.
Recovery is perfect, that is x̂ = x, in the noiseless case.

The focus of this paper is on sparse parameter vectors with
specific sparsity patterns. It is well known that prior knowl-
edge on the sparsity structure can be exploited to improve the
performance of the recovery algorithm, that being in terms
of speed, accuracy or observation size [6], [7]. More specifi-
cally, we consider a sparsity model where nonzero elements
appear in continuous sequences of length s or longer. Block
sparsity models frequently appear in machine learning, DNA
microarrays, MIMO channel equalization, source localiza-
tion in sensor networks and Magnetic Resonance Imaging
[8], [9]. Note that, as opposed to the classic group lasso
[10], [11], strings of active parameters can appear anywhere
throughout vector x and not only at specific positions. Also,
as already mentioned, only the minimum length of the string
is known. The model introduced here resembles the one
of [12]. However, their solution capitalizes on heuristics to
build a weighted sparsity-inducing norm, where the weights
must be tuned on a case-by-case basis. Another option is to
view our model as a particular case of the totally unimodular
framework in [13]. The authors encode the structure of the
group sparsity model in a totally unimodular matrix, (that is,
a matrix where every square submatrix has determinant 0 or
±1) and then use the double Fenchel conjugation. In contrast
to [13], we provide a theoretical approach to evaluate the
number of measurements needed for robust recovery and an
experimental comparisons between the induced norm and
the classical l1 norm. Finally, the (K,C)-Model proposed
in [14] (K-sparse vectors in at most C clusters) tackles a
similar question, but looks into uniform recovery in terms of
a modified restricted isometric constant (RIP) to quantify the
number of measurements necessary for this (K,C)-Model.
However, [15] only studies uniform recovery, which always
requires a higher number of measurements. Here, we are
more interested on non-uniform recovery guarantees, which
depend on specific characteristics of the sensed signal. On
the other hand, checking that a matrix has the RIP property
for some constant is NP hard [16]. We follow a different
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path, and derive our sparsity-inducing norm by applying the
atomic-norm paradigm introduced in [17]. Also we provide
results towards the characterization of the minimum number
of measurements that are required for robust recovery.

II. ATOMIC-NORM-BASED SIGNAL DESCRIPTION
As mentioned before, the focus of this paper is on vectors

that are block sparse of size s, meaning that the nonzero ele-
ments appear in groups of at least length s. In this section we
derive an atomic norm that promotes this sparsity structure.
To start with, let us introduce a couple of definitions that
will prove useful in the following.

Definition 1 (Atomic norm [17]). Let A be a compact subset
of RM and let ‖·‖A be the Minkowsky functional of A,
namely

‖x‖A = inf{t > 0 : x ∈ t · conv(A)}

for all x ∈ RM , where conv(A) denotes the convex hull of A
and t ·A = {t ·a : a ∈ A}. It is easy to prove that the above
Minkowsky functional is always convex and extended-real
valued for all A. Moreover, when central symmetry around
the origin is satisfied, that is, A = −A, the Minkowsky
functional is a norm and can be rewritten as

‖x‖A = inf

{∑
α∈A

cα : x =
∑
α∈A

cαα, cα ≥ 0 ∀α ∈ A

}
.

Definition 2. Given a couple of natural numbers (t, u) and
M > 0 such that M = tu, we define ltp

(
luq
)

as the vector
space RM equipped with the norm

‖x‖ltp(luq ) =

(
t∑
i=1

‖xi‖pluq

)1/p

where xi = [xu(i−1)+1, xu(i−1)+2, . . . , xui]
T ∀p, q ≥ 1.

Next, let us introduce a (not unique) representation of any
vector x ∈ Rms, for any two integers m, s > 0:

x =

ms∑
i=1

ai =

ms∑
i=1

‖ai‖lms
2

ai
‖ai‖lms

2

(3)

where ai ∈ Rms are vectors of the form

ai = Si−1[a1,i, a2,i, . . . , as,i, 0
T
m(s−1)]

T

for some a1,i, ..., as,i ∈ R, and where we introduced the
shift operator S ∈ Rms×ms, namely a circulant matrix with
first row [0, 0, . . . , 0, 1], as well as the null vector 0m(s−1) of
length m(s− 1). Note that the normalized vector ai‖ai‖−1

lms
2

belongs to the compact set

Ai = span
{
ei, ei⊕1, ..., ei⊕(s−1)

}
∩ Sms−1

where (ei)
ms
i=1 and Sms−1 denote the canonical basis and

the Euclidean unit sphere of Rms respectively, and where
i ⊕ s = ((i + s − 1) mod ms) + 1. Then, one readily sees
that (3) can be used to compute the atomic norm of x with

respect to A = {A1, ...,Ams} according to Definition 1,
with M = ms. Specifically,

‖x‖A = inf

{
ms∑
i=1

‖ai‖lms
2

: x =
ms∑
i=1

ai,
ai

‖ai‖lms
2

∈ Ai

}
.

(4)
For a vector x ∈ Rms that is block sparse of size s, the

atomic norm ‖x‖A is expected to be small, since very few
atoms in the set A are necessary to represent x. Moreover,
the active blocks of x are allowed to overlap, which is the
same as saying that active blocks may be longer than s.

II-A. Closed Expression for the Atomic Norm
The atomic norm for block sparse vectors of size s as

defined in (4) is of little help in practical applications. Next,
we show that a more useful closed-form expression exists,
namely

‖x‖A = ‖Hx‖ls2(lm1 ) (5)

(see Definition 2), with H ∈ Rms×ms a permutation matrix
with all zero elements except for those in position (i, j) such
that i = s((j − 1) mod m) + dj/me. In order to show (5),
let us define the vector

a = [a1,1, a2,1, . . . , as,1, a1,2, a2,2, . . . , as,ms]
T ∈ Rms

2

and the matrix Λ = [B1, B2, . . . , Bms] ∈ Rms×ms2 , where

Bi = Si−1

[
Is×s

0(m−1)s×s

]
∈ Rms×s

with Is×s the identity matrix of size s. Then, the atomic
norm of x can be computed as

‖x‖A = min
a
‖a‖lms

1 (ls2) s.t. x = Λa.

The Lagrangian of the above minimization problem, with
multipliers ξ ∈ Rms, is given by

L(a, ξ) = ‖a‖lms
1 (ls2) − 〈ξ,Λa− x〉

= 〈ξ, x〉 −
(
〈ΛTξ, a〉 − ‖a‖lms

1 (ls2)

)
.

Given that rank(Λ) = ms, strong duality holds and, thus,

‖x‖A = max
ξ

inf
a
L(a, ξ) = max

ξ

[
〈ξ, x〉 − F(ΛTξ)

]
= max

ξ
〈ξ, x〉 s.t. ‖ΛTξ‖lms

∞ (ls2) ≤ 1 (6)

where

F(z) = sup
a

(
〈z, a〉 − ‖a‖lms

1 (ls2)

)
=

{
+∞ ‖z‖lms

∞ (ls2) > 1

0 ‖z‖lms
∞ (ls2) ≤ 1

is the Fenchel conjugate of ‖·‖lms
1 (ls2), given by the indicator

function of the dual norm (see, e.g., [18, Example 3.26]).
From the definition of Λ, one sees that (6) requires that

ξ2
i + ξ2

i⊕1 + · · · + ξ2
i⊕(s−1) = 1, for all i = 1, 2, . . . ,ms,

and, in turn, ξ2
i = ξ2

j for all i ≡ j (mod s). Then, claim (5)
stems from

‖x‖A = max
ξ̃∈Ss−1

(
s∑
i=1

ξ̃i
∑

j≡i(mod s)

|xj |

)
= ‖Hx‖ls2(lm1 ).
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III. NUMBER OF MEASUREMENTS FOR
PERFECT/ROBUST RECOVERY

The objective of this section is to study the minimum num-
ber of measurements that are necessary in order to ensure
that the signal is recovered with overwhelming probability
when the measurement matrix is a random isotropic map.
Our approach will be based on the characterization of the
Gaussian width [17] of the atomic norm formulated above.

In order to introduce the concept of Gaussian width, let us
recall the definition of the tangent cone of our atomic norm
with respect to the point x, namely

TA(x) = cone {z − x : ‖z‖A ≤ ‖x‖A} .

Note that the tangent cone is generated by the set of
descending directions of our norm ‖·‖A with respect to
the reference point x. On the other hand, we can define
the normal cone as the collection of directions that have
a negative scalar product with (form an obtuse angle with
respect to) the elements of TA(x), that is

NA(x) = {w ∈ Rms : 〈w, z − x〉 ≤ 0 ‖z‖A ≤ ‖x‖A} .

Observe that, by using the permutation matrix H defined as
above and using conventional duality theory [19], the normal
cone for our specific choice of norm can be reformulated as:

NA(x) = H−1
(
Nls2(lm1 )(Hx)

)
(7)

=
⋃
t≥0

{
H−1w ∈ Rms

}

where


wi = t · sgn((Hx)i)

∥∥∥(Hx)
i
∥∥∥
lm1

if (Hx)i 6= 0

|wi| ≤ t
∥∥∥(Hx)

i
∥∥∥
lm1

if (Hx)i = 0

and where (Hx)
i denotes the m-dimensional block to which

the element (Hx)i belongs.
The interest of the tangent cone is revealed in the follow-

ing two propositions (respectively formulated for the noise-
less and the noisy signal model), which are a straightforward
generalization of the equivalent result for the l1 norm.

Proposition 1. [17, Proposition 2.1] Let Φ : Rms −→ Rn
be a linear operator, x ∈ Rms and define y = Φx. Then,
the following statements are equivalent:

1) x is the unique solution to the convex optimization
problem

x = arg min
y=Φz

‖z‖A (8)

2) ker(Φ) ∩ TA(x) = {0}.

Proposition 2. [17, Proposition 2.2] Let Φ : Rms −→ Rn
be a linear operator, x ∈ Rms and define y = Φx+η where
‖η‖ ≤ δ, δ > 0. If ‖Φz‖ln2 ≥ ε ‖z‖lms

2
for some ε > 0, for all

z ∈ TA(x) then, any solution x̃ of the convex optimization
problem:

x̃ = arg min
y=Φz

‖z‖A (9)

satisfies ‖x− x̃‖lms
2
≤ 2δ

ε .

The above two propositions establish a direct relation-
ship between recovery conditions for a certain deterministic
measure map Φ. However, in many applications it is very
difficult to design such matrix in a deterministic way so
as to guarantee perfect recovery according to the above
deterministic criteria. For this reason, one typically relies
on randomized approaches, according to which the mea-
surement matrix Φ is randomly built according to some
statistical constraints. When this is the case, one can only
guarantee recovery up to a certain probability, but this is
enough in practice to guarantee a typical good performance
of the compressed sensing method. In order to characterize
the chance of recovery when the measurement matrix is
random, it is helpful to consider the concept of Gaussian
width of a given set T ⊂ Rms, which is defined as

ω (T ) = E sup
x∈T
〈g, x〉

where g is a standardized Gaussian random variable. The
main interest of the random width is summarized in the
following proposition, which is based on concentration in-
equalities for Lipschitz functions and the Gordon lemma.

Theorem 3. [17, Theorem 3.2] Let Φ : Rms −→ Rn be
a random matrix with i.i.d. zero mean and variance-1/n
entries and consider x ∈ Rms. Let T denote the spherical
part of the tangent cone in the atomic norm, that is T =

TA(x) ∩ Sms−1 and define λn =
√

2Γ(n+1
2 )

Γ(n
2 )

. Then, the two

following statements hold true.
1) If y = Φx, then x is the unique solution to the convex

optimization problem in (8) with probability

1− exp

(
−1

2
(λn − ω(T ))

2

)
provided that n ≥ ω2(T ) + 1.

2) If y = Φx + η with ‖η‖ln2 ≤ δ for some δ > 0,
then given 0 < ε < 1, any solution x̃ of the convex
optimization problem in (9) satisfies ‖x− x̃‖lms

2
≤ 2δ

ε
with probability

1− exp

(
−1

2

(
λn − ω(T )−

√
nε
)2)

provided that n ≥ ω2(T )+3/2

(1−ε)2 .

Observe that in both the noiseless and the noisy models
one can ensure recovery with overwhelming probability as
long as the number of measurements is larger than a quantity
that is proportional to ω2 (T ), i.e. the square of the Gaussian
width of the spherical part of the tangent cone. It is therefore
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very important to characterize this quantity for the selected
atomic norm. As shown in [19], the square of the Gaussian
width of T = TA(x) ∩ Sms−1 can be upper bounded by

ω2 (T ) ≤ E min
z∈NA(x)

‖g − z‖2 .

We can investigate the behavior of the right-hand side of the
above equation by using the characterization of the normal
cone in (7), namely ω2 (T ) ≤ mint≥0 (η1(t) + η2(t)) where

η1(t) = E

 ∑
i∈supp(x)

(
gi − sgn(xi)t

∥∥∥(Hx)
i
∥∥∥
lm1

)2


η2(t) = E

 ∑
i/∈supp(x)

min
|zi|≤t‖Hxi‖ln1

(gi − zi)2

 .

The above follows from the fact ω2 (T ) ≤ η1(t) + η2(t)
for every t ≥ 0 and in particular for the minimum. Let us
first focus on η1(t), which can be upper bounded as

η1(t) =
∑

i∈supp(x)

(
1 + t2

∥∥∥(Hx)
i
∥∥∥
lm1

)

≤ ps+ t2p ‖Hx‖2ls2(ln1 ) = ps

(
1 +

t2

s
‖x‖2A

)
where p denotes the number of active blocks in x. Regarding
η2(t), we can upper bound it as:

E
∑

i/∈supp(x)

S2
t‖(Hx)i‖

lm1

(gi) ≤ mE
s∑
i=1

S2
t‖(Hx)i‖

lm1

(gi)

where S2
t (g) = min|z|≤t(g − z)2 is the square of the soft-

thresholding operator. Considering the change of variables
t
‖x‖A√

s
7→ t we readily obtain the upper bound for the

Gaussian width

min
t≥0

[
ps
(
1 + t2

)
+mE

(
s∑
i=1

S2

t
√
s
‖(Hx)i‖lm1
‖x‖A

(gi)

)]
.

There are simple cases in which we can obtain a closed
form for the above estimate of ω2 (T ). For instance, assume
that the support of x has p active and disjoint blocks with
spikes of the same amplitude, then

√
s
∥∥∥(Hx)

i
∥∥∥
lm1

= ‖x‖A
∀i and the above expression simplifies to

ω2 (T ) ≤ min
t≥0

[
ps
(
1 + t2

)
+mE

(
s∑
i=1

S2
t (gi)

)]
Using the same argument as in [19] we obtain the following
useful estimate ω2 (T ) ≤ 2ps log

(
e sp

)
. More generally, let

us assume that there exists a constant 0 < ϑ < 1 such that
ϑ ≤

∥∥∥(Hx)
i
∥∥∥
lm1

‖Hx‖−1

ls∞(lm1 ) by an application of Hölder’s

inequality, we get:

ϑ ≤
√
s
∥∥∥(Hx)

i
∥∥∥
lm1

‖x‖−1
A .

Thanks to monoticity of the soft-thresholding operator,

ω (T )
2 ≤ min

t≥0

[
ps
(
1 + t2

)
+mE

(
s∑
i=1

S2
tϑ (gi)

)]

≤ min
t≥0

[
ps
(
1 + t2

)
+ms exp

(
−t2ϑ2

2

)]
.

Therefore, by taking t = 1
ϑ

√
2 log

(
m
p

)
, we obtain the

following bound for the Gaussian width

ω2 (T ) ≤
(

1 +
2

ϑ2
log

(
m

p

))
ps+ps ≤ 2

ϑ2
ps log

(
e
m

p

)
.

Note that, when the reordered blocks show an almost flat
lm1 norm and, in turn, ϑ ≈ 1, the bound above is essentially
the same as the one for the classic CS case in (2), for M =
ms and ς = ps. Conversely, as the blocks are more irregular
and ϑ→ 0, we see that the Gaussian width tends to increase
and, with it, the number of measurements required for perfect
reconstruction.

IV. NUMERICAL EXAMPLES
We give some numerical examples that illustrate the per-

formance of the atomic norm as compared to the traditional
l1 norm. We consider the linear model proposed in (1), with
M = 200 and where the unknown signal x is block sparse of
size s = 10 (thus, m = 20). We assume that the number of
active blocks is p = 2 and that the nonzero elements take the
value +1. The entries of the measurement matrix Φ ∈ Rn×M
are generated as i.i.d. zero mean Gaussian random variables
with variance 1/n. Similarly, the additive noise is also
Gaussian and white, distributed as η ∼ N (0, 0.04 · In×n).
Under this setup, we study the signal support recovery
properties of the regularized minimization problem

min
x
‖y − Φx‖2ln2 + λ‖x‖X (10)

with X either lM1 , the classic l1-norm, or A, the atomic norm
presented in this paper and given by (5). More specifically,
for all j = 1, 2, . . . ,M , we compute γj = ‖xj‖ls2 , with
xj = [xj , xj⊕1, . . . , xj⊕(s−1)], and check whether the two
indices j with the highest value of γj correspond to the start
of the two active blocks in the true signal x. We use the
interior point method for solving (10) in both cases. The
plots in Fig. 1 show the (empirical, out of 150 experiments)
probability of correctly recovering both blocks as a function
of the regularizer parameter λ, with λ ∈ [0, 5] (note that,
in our setup, 5 ≈ 2‖ΦTy‖∞: above this value the solution
to (10) is identically null in the l1-norm case [20]). In
the top graph, the measurement size is set to n = 133,
which guarantees perfect reconstruction for both norms,
according to (2) and Theorem 3, respectively. We see that
the atomic-norm algorithm is much more robust with respect
to the choice of the regularizer parameter and almost perfect
reconstruction is achieved for a wide range of values of
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λ. Conversely, the l1-norm-based algorithm guarantees a
recovery probability above 90% only for few values of λ.
The bottom graph, on the other hand, reports the case
where n = 100, which is below the minimum number of
measurements for perfect reconstruction. Indeed, we see that
the classic algorithm shows a perfect-recovery probability of,
at most, 80%, while the proposed norm still achieves around
90% recovery probability for almost the entire range of λ.

V. CONCLUSION
In this paper, we have derived a norm that is more suitable

than the classical l1 norm in CS problems where sparsity
obeys a specific block structure, that we assumed known. We
have seen that this norm consists in a rearrangement of the
l2 (l1) norm and that it preserves the same Gaussian-width
bounds and the same number of measurements for exact
and robust recovery as the l1 norm. However, as supported
by numerical simulations, the new norm has proved to
be much more reliable in the recovery of the unknown
signal support by means of the regularized least squares
problem. Moreover, as evinced by the reported results, the
atomic norm is much more robust with respect to reduced
measurement size as well as with respect to the choice of
the regularization parameter λ, which is usually critical in
the classical l1-norm case.
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