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Abstract—This paper investigates automatic epileptic seizure
detection from audio recordings using convolutional neural net-
works. The labeling and analysis of seizure events are necessary
in the medical field for patient monitoring, but the manual
annotation by expert annotators is time-consuming and extremely
monotonous. The proposed method treats all seizure vocalizations
as a single target event class, and models the seizure detection
problem in terms of detecting the target vs non-target classes. For
detection, the method employs a convolutional neural network
trained to detect the seizure events in short time segments, based
on mel-energies as feature representation. Experiments carried
out with different seizure types on 900 hours of audio recordings
from 40 patients show that the proposed approach can detect
seizures with over 80% accuracy, with a 13% false positive rate
and a 22.8% false negative rate.

Index Terms—Epileptic seizure detection, convolutional neural
network (CNN), sound event detection, audio processing and
analysis.

I. INTRODUCTION

The epilepsy is an incurable disease, but the patients can

achieve seizure free state by taking medicines. To find the

optimal drugs, the doctors need to know the epilepsy type and

the impact of certain drug combinations on the patient. The

nurses and family members write a diary about the seizure

events, but the emerging modern technologies can help to

automate this process. The epileptic seizure detection has

many challenges because this neurological malfunction can

affect varying brain regions and cause different limb move-

ments, facial expressions or screams. The medical devices

worn by the patients are called invasive instruments (e.g. EEG,

bracelet with accelerometer). Non-invasive methods include

video surveillance or audio recordings. The invasive devices

can monitor vital parameters precisely, they are uncomfortable

for the patients and they can be disconnected accidentally or

by motor seizures. The audio and video recordings are less

accurate than the invasive methods though they are always

available. An advantage of the non-invasive devices that they

can be used in home setting while the patients must stay in a

hospital for invasive monitoring what is very expensive in a

long-term and it involves long waiting lists.

The golden standard for the epilepsy diagnosis is the video

electroencephalography (VEEG) and generalized tonic-clonic

seizures (GTCS) can be detected reliable with this approach.

During a VEEG session, the patient is constantly monitored by

camera and EEG for several days to know the brain activity

if a seizure happens. Geertsema et al [1] used optical flow

record on VEEG data. They selected the parameters with 72

seizure videos for their algorithm and the evaluation was done

on 24 full nights of 12 new subjects. They detected all GTCS

events in the testing set and the median false detection rate

(FDR) was 0.78 per night. Leijten et al [2] and Beniczky

[3] reviewed non-EEG based methods for multiple seizure

types. The review included accelerometers, heart rate monitors,

electrodermal activity sensors and electromyograph sensors.

They found that non-EEG methods need multimodal seizure

detection for clinical use. Although they can detect GTCS

with high sensitivity (90%) and low FDR (0.2/day), there is

limited evidence for detection of other seizures than GTCS.

Many false detections (50-216/day) and low sensitivity (19-

74%) limit the applications of these wearable devices.

The audio modality of the epileptic seizures (vocalization)

got little attention in the research community. Al-Hammadi [4]

analyzed if the audio recordings of epileptic and psychogenic

non-epileptic (PNE) seizures can be classified with linear,

quadratic or support vector machine (SVM) classifiers. The

SVM classifier with 4 mel-bands achieved 76% accuracy in

cross-validation, but the sample size was limited to 16 epileptic

and 20 PNE seizures.

Arends et al [5] studied epilepsy patients with intellectual

disability. After they selected ten adults with major seizures

and recognizable sounds out of the initial 17 individuals, each

person was monitored with audio and video recording for 4

weeks. The audio detection was reliable at detecting either the

initial vocalization or noise in a major seizure, but the pro-

duced sounds were specific for each patient, therefore, major

seizures could be detected for the half of the participants.

Bruijne et al [6] observed vocalization during 61 out of

95 seizures of 17 patients. The study used simple audio

statistics from 25 msec-long sliding windows and classifiers

were trained to look for e.g. scream, smacking of lips, moans

or heavy breathing. Their experimental results showed preci-

sions of 66-77% with 10-fold cross-validation, but precision

decreased quickly with added noise, and the classifiers were

not evaluated with unseen data.

This paper proposes a novel approach to epileptic seizure

detection using audio, by treating the various seizure vocaliza-

tions as a single target event class and modeling the seizure

detection problem in terms of target vs non-target classes. The

method uses a convolutional neural network (CNN) to learn

the acoustic characteristics of the two classes, using a large

dataset of annotated patient data. At detection stage, the input
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consists of long audio recordings (10-14 hours) on which the

system performs the seizure detection in short time segments.

This paper is organized as follows: Section II introduces the

proposed method for analysis of seizures in audio, including

feature representation, problem modeling, and system archi-

tecture. Section III describes the dataset, the data preparation

process and the cross-validation setup, Section IV presents and

discusses the results obtained using the proposed method, and

finally Section V presents conclusions and future work.

II. TARGET SOUND EVENT DETECTION IN AUDIO

Sound event detection usually refers to identifying the onset

(starting point) and offset (ending point) of a certain target

sound events and labeling them by analyzing the acoustic

features. In the proposed method, the epileptic seizure is

considered as a target event to be detected in the audio

recording. We chose a CNN architecture for detection, as

CNNs are often applied and perform well for different audio

classification and detection tasks, being one of the top recent

approaches for acoustic scene classification [7], [8], audio

tagging [9]–[11], or detection of target sounds such as bird

sounds [12], [13]. In particular, CNN is among state of the art

methods for rare sound event detection [14], which represents

a similar type of problem as the seizure detection task.

For detecting a seizure event, the input audio is divided

into short segments from which the features are extracted. The

CNN is trained using these features; in the test phase, the CNN

provides decisions on target event being present in the test au-

dio, in segments of the same length as in training. The segment

length for the audio analysis and seizure detection was selected

as 10 seconds as it provides enough audible content about the

target event in each segment that is needed for training the

neural network. This method provides detection of the target

event with a 10 s temporal resolution, instead of exact onset

and offset. Figure 1 presents the block diagram for detection,

with training and testing branches illustrated separately.

A. Feature Extraction

Mel-band energies provide a coarse representation of the

spectral information and are proven to be a suitable feature

representation for many audio classification/detection prob-

lems [15] [16] [17]. In addition, they are compact and easy

to calculate. For these reasons, they were selected as feature

representation in this work. Specifically, mel-band energy was

calculated for each 10 s segment of the input audio, using 40

mel bands, and a window length of 40 ms with a 20 ms hop

length.

B. Target event detection using CNN

The extracted features are fed to the CNN as input sequence,

which are I × 40 × 500 dimensional. Here, I indicates the

number of filters, 40 is the number of mel bands and 500

is sequence length (= 10 s). These features are learned using

the convolutional layers, and the kernels that spread over both

frequency and time axes enable the CNN to learn the relevant

temporal characteristics of the target class. During the training

Fig. 1. Training and testing the system for seizure detection

Fig. 2. Different layers of the CNN model architecture

process, in each segment, the target output is 1 while a seizure

event is active and 0 while inactive. A max-pooling operation

along both axes is performed after each CNN layer to reduce

the dimensionality of the data. Batch normalization [18] is

done after both of the convolutional layers for normalizing

layer inputs, and the activation function used here is rectified

linear unit (ReLu). To prevent overfitting, a 30% dropout is

used after each layer. The output layer contains one sigmoid

unit, and the final output is binary, indicating target class

active or inactive. We use the binary cross-entropy as the loss

function, and Adam optimizer [19] during the training. The

CNN layers are presented in Fig. 2.

In the test phase, binary classification by the trained CNN

is obtained for each 10-s segment.

III. DATASET

The dataset used in this paper consists of audio recordings

of 40 seizure patients. The monitoring of the patient involved

video recording during the night inside their residence; the

average recording length is about 10-14 hours. The audio was

extracted from the video recordings and then prepared for

analysis and detection of seizures.

The data was annotated by certified nurses who watched

the entire video recordings on high speed and labeled seizure

events based on visual cues only. As the audio clips are

extracted directly from the video, these have the same an-

notations. For preparing the training dataset, the target class

(seizure) events were clipped from the audio based on these

Fig. 3. Extraction of target seizure events from video
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TABLE I
NUMBER OF EXAMPLES IN TRAIN AND TEST SET OF DIFFERENT SETUPS;

SRCONT TEST SET CONTAINS 74 WHOLE NIGHT RECORDINGS

Experiment

setup
Test set

No. Train

examples

No. of Test

examples

SRSeg patient- A, B, C, D 765 199

SRCont patient- D, E, F 841 74

annotations, with a 120-s additional segment of non-target

(non-seizure) material both before and after the target one.

The role of this padding is to serve as example of non-target

class and provide context information; considering that usually

seizures are rather short (10-30 s), we considered that 120-

s padding provides a sufficient degree of data imbalance to

the model. In consequence, each audio file has the content

as illustrated in Fig. 3. For testing, also continuous audio as

recorded throughout the night was used. The audio material is

mono, with a sampling rate of 48 kHz, and 80 kbps bit rate

which is attained using the Ogg Vorbis compression format.

Two different experimental setups have been prepared. First,

a total of 954 audio examples containing target events and non-

target audio padding were prepared according to the procedure

mentioned above; among these, we manually labeled 199 of

them based on different characteristics of the acoustic content

using the following categories:

• Sound seizure: containing typical seizure vocalizations,

no background noise.

• Noisy seizure: containing lots of background noise (other

people, TV, etc).

• Silent seizure: no vocalization, mostly silent.

In addition, whole night recordings are used as test data; and

some may not contain any seizure events. There are in total

74 nights of full-length recordings, estimated around 850-900

hours.

The two experimental setups are constructed as follows:

• Seizure Recordings Segmented (SRSeg): containing the

954 audio clips that were prepared with a 120 s padding.

The test set contains the 199 clips that have detailed

annotation, while the training set contains the other 765

clips. Training data contains data from 18 patients, while

test data contains data from 4 patients which are not

present in the training set. For added anonymity and

ease of future reference, we denote individual patients

alphabetically (A, B, C and D).

• Seizure Recordings Continuous (SRCont): containing

the same type of segmented data as SRSeg for training,

and whole night recordings (continuous) for testing. The

training data of SRCont contains data from 18 patients

(not exactly the same as SRSeg), while the test data

contains data from 3 patients (D, E, and F).

Table I shows the details of these two setups, including the

number patients in the test set, and number of examples in

train and test set.

Fig. 4. Error types and correct detection output when comparing system
output and ground truth using 10-s length segments

TABLE II
DETECTION RESULTS ON SEGMENTED AUDIO WITH VARIABLE

THRESHOLD VALUES

Threshold FPR FNR TPR TNR Accuracy

0.5 23.75 47.86 52.14 76.25 71.42

0.1 39.13 22.08 77.92 60.87 64.28

0.05 65.26 9.74 90.26 34.74 45.86

IV. EXPERIMENTAL RESULTS

The experiments were conducted using the setup described

in the previous section. Results are analyzed overall and by

considering the different characteristics of seizures in SRSeg

and the different patient characteristics in SRCont.

A. Evaluation Metrics

We measure five different metrics to evaluate the system:

false positive rate (FPR), false negative rate (FNR), true

positive rate (TPR), true negative rate (TNR), and detection

accuracy. Evaluation is performed in segments of length 10 s

according to the modeling and system output, following the

methodology in [20] for sound event detection. Fig. 4 illus-

trates the evaluation procedure by comparing the the system

output (SO) with the ground truth (GT) of a test audio

examples containing a seizure event. The illustration contains

one false positive–no seizure annotated in GT, but detected

as active in system output and one false negative–segment

annotated as seizure in GT, but not detected in system output.

B. Seizure detection in segmented audio data

Overall results using the SRSeg dataset are presented in

Table II, using different thresholds for the decision making.

Because of the nature of the data and target application, it is

important to detect all seizure events, therefore the emphasis

is on minimizing the number of false negatives: reducing

the number of times the system fails to detect a seizure

event whereas there is one. As a consequence, accepting false

positives is tolerable to some extent. From Table II, we can see

that with the decision threshold set to 0.5, the FNR is about

47% whereas the FPR is 23%, with 71% detection accuracy.

When the detection threshold reduced, FNR tends to decrease;

the increase of FPR is however not at the same rate.

Detection performance evaluated separately for the three

seizure types described in Section III is presented in Table

III. We observe that the sound seizures are detected with

73% accuracy with 48.2% false negative rate and 22.7%

false positive rate which is similar to the overall results for
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TABLE III
DETECTION RESULTS ON SRSEG FOR DIFFERENT SEIZURE TYPES, USING

THRESHOLD 0.5

Seizure Type FPR FNR TPR TNR Accuracy

Sound seizure 22.71 48.28 51.72 77.29 73.31

Noisy seizure 29.35 44.14 55.86 70.65 65.95

Silent seizure 18.53 62.96 37.04 81.47 73.94

Fig. 5. FNR, FPR and TPR values against threshold for different values

the same threshold 0.5, mentioned in Table II. However, the

noisy seizures have slightly less amount of false negatives but

increased FPR at about 29% which happens to be the highest

among others because of the extra background noises. The

false negative rate is the highest for the silent seizures, which

is expected, as the amount of audible audio content present

in this type of seizure is significantly lesser than the others.

That is why the false negative rate is about 63% and the true

positive rate is also lowest, at 37%.

Figure 5 illustrates the behaviour of FPR, FNR and TPR for

different threshold values from 0.05 to 0.5. When the threshold

is reduced, FNR decreases while FPR and TPR increase; FPR

has a sharp increase at the low detection thresholds. When

the threshold is set to 0.3, FNR and FPR are quite similar, at

about 30%. If the operating point is reduced as low as 0.05,

FNR is reduced to about 9%, while FPR is at its highest at

65%. Finding an optimal operating point to balance between

the FNR and FPR is the key to obtaining the optimal detection

performance for the task.

C. Seizure detection in continuous recordings

The system was tested with whole-night recordings from

three different patients, to understand its behavior in a real-life

detection situation. Experiments on SRCont were conducted

with the same parameter set and system setup as for SRSeg.

The evaluation results for continuous recordings of three

patients are presented in the table IV. For this experiment too

we varied the detection threshold to observe the behaviour of

the system. Overall, as the threshold decreases, FNR reduces

to as low as 1.8%, but with the very high FPR of 85%. A

more balanced performance is achieved for the 0.5 threshold,

82% accuracy with a false negative rate of about 22% and the

false positive rate about 13%.

We also evaluated the system separately for each patient,

using the threshold of 0.5. Results are shown in Table V. We

TABLE IV
DETECTION RESULTS ON CONTINUOUS RECORDINGS FOR DIFFERENT

THRESHOLD VALUES

Threshold FPR FNR TPR TNR Accuracy

0.5 13.01 22.81 77.93 86.99 82.14

0.3 63.35 11.38 88.62 36.65 36.95

0.2 85.37 1.85 98.15 14.63 15.12

TABLE V
PATIENT-WISE-SRCONT

Patient FPR FNR TPR TNR Accuracy

D 4.92 40.72 59.23 95.09 77.18

E 5.59 18.81 83.39 94.40 87.92

F 28.50 8.90 91.09 71.49 81.29

observe that FNR varies for different patients although the

decision threshold is the same for all of them. This suggests

that a different operating point could provide optimal detection

for different patients. In this case, FNR is lowest for patient F

but at the same time FPR is the highest. For patient E, FNR is

about 18% whereas FPR is as low as 5%, with 87% detection

accuracy. A TNR of about 94% suggests that the system is

able to distinguish between the target and non-target events

quite successfully. Tuning the operating point for each patient

individually might help detecting the target events better.

According to table V, the best detection performance was

achieved for patient F. An inspection of the data reveals

that the recordings of patient F contain clear seizure-specific

vocalizations and almost no background noise, while for

example data of patient E contains lots of continuous talking

and other background noise, while the annotated seizures do

not have prominent seizure-specific vocalizations. Some of

the particularly difficult cases also contain continuous snoring,

heavy breathing, television on, or loud conversation.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a novel approach for epileptic seizure

detection in audio, using a CNN trained using mel-energies.

The method was tested on a dataset of over 900 h of patient

monitoring data. By treating all seizure vocalizations as a

target event, we showed that a CNN is capable of learning and

detecting seizures in unseen audio data, containing recordings

of patients not encountered in training. The performance of

the system is insufficient for reliable independent monitoring,

but the system provides a tool that reduces significantly the

monitoring effort. By tuning the seizure detection system such

that it produces very small amount of false positives, the

human annotation effort is directed towards verification of the

events detected by the system in order to discard the false

positives.

Future work includes investigation of different methods

for the audio-based detection, with different neural network

architectures such as convolutional recurrent neural network

(CRNN) could be exploited in order to obtain a better balance

between error types. In addition, combining the audio and

video modalities is likely to provide additional information

which could improve the overall detection performance.
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