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Abstract—We propose a data reduction method that improves
the speed of training the support vector machine (SVM) al-
gorithm. In particular, we study the problem of finding a
weighted subset of training data to efficiently train an SVM
while providing performance guarantees. Relying on approximate
nearest neighborhood properties, the proposed method selects
relevant points and employs the concept of maximal indepen-
dent set to achieve desired coverage of the training dataset.
Performance guarantees are provided, demonstrating that the
proposed approach enables faster SVM training with minimal
effect on the accuracy. Empirical results demonstrate that the
proposed method outperforms existing weighted subset selection
techniques for SVM training.

Index Terms—SVM, nearest neighbors, independent set

I. INTRODUCTION

Support vector machine (SVM) classifiers have found wide

use due to being theoretically well-motivated and having de-

sirable performance in practice. The SVM learning algorithm

essentially solves a quadratic program where the objective is to

maximize the width of the linear separation between different

data classes. When the objective function incorporates a ker-

nel, SVM can perform nonlinear classification tasks by solving

the linear separation problem in higher dimensions. However,

SVM suffers from high running time and memory require-

ments. These limitations become particularly pronounced as

the sizes of datasets become very large.

A number of algorithms that attempt to speed up the

training of SVM classifiers have been proposed in literature.

The Sequential Minimal Optimization (SMO) [1] algorithm

focuses on the dual problem and employs an active set of

constraints to select a subset of the dual variables. These

algorithms converge slowly and have time complexity that is

super linear in the size of the data. Approximate algorithms

include LASVM [2], an online version of the SMO algorithm

that iteratively constructs the set of support vectors over a

number of epochs, and then applies the SMO algorithm on

the constructed set of support vectors. The computational

complexity of LASVM is between O(n) and O(n3) depending

on the size of the selected support vectors, where n is the size

of the data. Another approximate method is Pegasos [3], a

stochastic subgradient descent algorithm that solves the primal

optimization problem. Its running time for non linear kernels is

O(n/λǫ), where λ is the regularization parameter of SVM and

ǫ is the accuracy of the solution. For linear kernels, its runtime

is O(d/λǫ) where d is the bound on the number of non zero

features in each example. Note that when the linear kernel

is used, LIBlinear [4], an online algorithm which employs

dual coordinate descent, has linear running time. Cutting plane

approaches such as SVM-perf [5] find a solution with accuracy

ǫ in time O(nd/λǫ2); this was further improved to O(nd/λǫ).
Data reduction, also referred to as instance selection, takes

a different approach to scaling machine learning algorithms to

large scale data. Among the instance selection methods that

have been developed for training SVMs, the nearest neighbor

SVM (NNSVM) [6] algorithm attempts to select points that

are close to the boundary of the classifier by searching for the

nearest point to each point in the dataset, and removing the

points whose nearest neighbor is from the opposite class. How-

ever, the NNSVM algorithm is impractical for large datasets.

In sampled SVM (SSVM) [7] and reduced SVM (RSVM)

[8], random sampling methods are employed to reduce the

size of the training set. Furthermore, in an attempt to enhance

generalization, the authors of [9] proposed an algorithm that

performs k-means clustering and retains clusters of points from

the same class. In [10]–[12], data geometry is exploited to

make use of the centroids of classes to reduce the training

set size. In [13], the informative vector machine algorithm is

proposed to efficiently train sparse Gaussian process classifi-

cation models. In particular, training is enabled by greedily

selecting a subset of the training set such that the conditional

entropy of the approximated posterior is minimized [14]. In

[15], a coreset selection for SVM training using the core vector

machine (CVM) algorithm is proposed. Coresets are small

summaries of the dataset such that solutions on the summary

are close to solutions on the whole dataset [16]. In [17], a

proposed algorithm leverages submodularity to optimize both

the relevance and the coverage of a selected subset, based

on the approximate nearest neighborhood properties of the

dataset.

Relying on the approximate nearest neighborhood proper-

ties, in this paper we maximize the training data coverage

by constructing a maximal independent set on the k nearest

neighbor graph. Furthermore, we provide performance guar-

antees for the proposed method. Empirical results obtained on

two datasets demonstrate that the proposed method achieves

competitive running time and near optimal accuracy, generally

outperforming existing subset selection algorithms for SVM.

II. PROBLEM FORMULATION

Let V = {(xi, yi)
n
i=1} denote a set of n training samples,

where xi ∈ Xd is a d-dimensional feature vector and yi is

the corresponding binary target. To simplify handling of a

bias term, the last dimension of every xi is equal to 1. We
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are interested in selecting a small subset S from V such that

training the SVM on S rather than V incurs minimal loss

of performance. To this end, we consider minimization of an

objective that consists of the average hinge loss evaluated on

the training set V and a regularization term, i.e.,

min
w

1

n

∑

i∈V

max(0, 1− yi(w
Txi)) + λ ‖w‖, (1)

where xi, i = 1, ..., n, is the input vector and yi ∈
{−1, 1} is the target variable. We define Cost(V, w) =
1/|V|

∑
i∈V

max(0, 1− yi(w
Txi)) to be the average hinge

loss achieved by a classifier w and Cost(V, w∗
V
) =

1/|V|
∑

i∈V
max(0, 1− yi(w

∗T
V

xi)) to be the average hinge

loss achieved by the optimal classifier w∗
V

, i.e., w∗
V

is the

solution to optimization problem (1).

We are interested in finding a weighted subset S (we assign

a weight zi for each element xi in S) such that

min
S

| Cost(V, w∗
V)− Cost(V, w∗

S)|

s.t. |S|/|V| ≤ η,
(2)

where η denotes the fraction of training data retained. η is a

real number between 0 and 1; values closer to 0 correspond

to significant reductions in the size of the training dataset.

w∗
S

denotes the hyperplane obtained after training on the

selected subset S . Since S is a weighted subset, w∗
S

mini-

mizes Cost(S, w) = 1∑
i∈S

zi

∑
i∈S

zimax(0, 1− yi(w
Txi)),

a redefined version of the cost for a weighted subset.

In case of non linear problems, the dual form of Eq. 1, which

can be expressed in function of the dot products between

all pair of samples, uses the dot products of some trans-

formation φ(.) of the data. Dot products in the transformed

space are facilitated by the kernel function, where the kernel

function k(xi, xj) = φT (xi)φ(xj). The cost function is now

expressed in function of φ(xi) instead of xi. And so from

now onwards in the paper, we will replace xi by φ(xi) is

the cost expression such that for example Cost(V, w) =
1/|V|

∑
i∈V

max(0, 1− yi(w
Tφ(xi))).

A. Nearest neighborhood properties

As a preprocessing step for our algorithm, we require to

obtain the nearest neighborhood properties of points in the

dataset. Constructing the exact k nearest neighborhood graph

of the dataset is quadratic in the number of samples, and hence

infeasible for large datasets. We compute instead approximate

nearest neighbors using locality sensitive hashing (LSH) which

uses similarity preserving hash functions. We use the LSH

implementation in [18] with sublinear query time and sub-

quadratic space requirements. As in [17], and for each point,

we compute the corresponding k nearest neighbors belonging

to the same class, as well as the k nearest neighbors belonging

to the opposite class. Accordingly, the function f(·) is defined

as follows. f(xi) is equal to 1 if xi is the k nearest neighbor

of any point from the opposite class. Points with f(·) equal to

1 are the points close to the boundary, i.e. the relevant points,

which is useful for us as explained later in Sec. III-C.

III. COVERAGE BASED ON THE MAXIMAL INDEPENDENT

SET

In order to optimize Eq. 2, we observe that the cost depends

on the distance between a point and the separating hyperplane.

More generally, in case we are using a non linear kernel for the

SVM, then the cost depends on the distance between φ(xi) and

w, where φ(·) is the nonlinear transformation facilitated by the

kernel function (i.e., k(xi, xj) = φT (xi)φ(xj)). The intuition

of our approach is that a weighted point can summarize the

contribution of its k nearest neighbors belonging to the same

class, where the distance metric used for nearest neighbors

should be proportional to ‖φ(xi) − φ(xj)‖2. For both the

RBF kernel as well as the linear kernel, the Euclidean distance

D(x1, x2) = ‖x1−x2‖2 is a suitable metric. In order to present

the proposed algorithm, we first introduce some concepts.

Definition 1 (Independent set). An independent set is a set of

vertices in a graph such that no pair of vertices are adjacent.

Definition 2 (Maximal independent set). A maximal indepen-

dent set (MIS) is an independent set that is not a subset of

any other independent set.

A maximal independent set is also dominating. Given a

graph G = (V , E) with set of vertices denoted as V and set

of edges denote as E , a dominating set for the graph G is a

subset D of V such that every vertex not in D is adjacent to

at least one member of D.

To find a weighted subset S and its corresponding weight

vector z, we search for the maximal independent set given

the undirected version of the directed graph G(V, E) defined

as follows; the set of vertices of the graph corresponds to

the set of points in V , and the set of edges denoted by E
is defined as follows; there exists an edge between vertex v1
and vertex v2 if the data point corresponding v2 is a k nearest

neighbor from the same class of the data point corresponding

to v1, or vice versa. The number of nearest neighbors k is

a parameter that can be adjusted while constructing G and,

consequently, used to control the size of the subset S . As we

show in Theorem 1, the lower the value of k, the tighter the

performance guarantees; unfortunately, this comes at the cost

of increase in the size of the MIS S . In general, the number

of nearest neighbors for each class is a hyperparameter that

can be tuned.

A. Algorithm

Our sequential algorithm for finding a maximal independent

set is formalized in Algorithm 1. The algorithm first constructs

the undirected graph described in Sec III after computing the

approximate nearest neighbors in each class. The running time

of this preprocessing step is sub quadratic in the size of the

data. Then we randomly pick a data point v from the total

set V , we add the point to the set S , we assign to the point

a weight z equal to the number of k nearest neighbors of v
existing in V at the time we selected it, and then we remove

the point v and its nearest neighbors in V from V . We repeat

until V is empty.
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Algorithm 1 Greedy weighted subset selection based on MIS

Construct the undirected graph G from data.

Initialize S to an empty set.

while V is not empty: do

Choose randomly a node v ∈ V
Add v to the set S
Assign to node v a weight z equal to the numbers of

neighbors of v in V
Remove from V the node v and all its neighbors in V .

end while

Return S, z

The selection algorithm runtime is O(|E|) = O(nk). We

also note that even though our approach doesn’t guarantee

as specified in Eq. 2 that the selected subset size will be

under some fraction of the original dataset size, increasing

the number of nearest neighbors k decreases the size of the

subset S , at the expense of the tightness of the performance

guarantee.

B. Performance guarantees

By constructing a weighted subset S as an maximal in-

dependent set of G(V, E), the performance guarantees of

Theorem 1 are as follows:

Theorem 1. Let S denote a maximal independent set con-

structed by selecting points from set V as described in

Alg.1. Assuming that for any pair of k nearest neighbors xi

and xj from the same class, there exists ǫ > 0 such that

‖φ(xi)−φ(xj)‖2 ≤ ǫ, then for any hyperplane w, ‖w‖2 = 1,

it holds that | Cost(V, w)− Cost(S, w)| ≤ ǫ.

Proof.

Cost(V, w) (3)

=
1

|V|

∑

i∈V

max(0, 1− yiw
Tφ(xi)) (4)

=
1

|V|

∑

i∈S

∑

j∈N ′(xi)

max(0, 1− yjw
Tφ(xj)) (5)

=
1

|V|

∑

i∈S

ziE[max(0, 1− yCi
wTφ(xCi

))] (6)

where wTφ(xi) is the distance from the sample φ(xi) to the

separating hyperplane w, N ′(xi) is the set of vertices adjacent

to xi at the time xi is added to the set S , i.e. |N ′(xi)| = zi
and xCi

is a random variable uniformly distributed on N ′(xi).
Now,

Cost(S, w) (7)

=
1∑

i∈S zi

∑

i∈S

zi max(0, 1− yiw
Tφ(xi)) (8)

=
1

|V|

∑

i∈S

zi max(0, 1− yiw
Tφ(xi)). (9)

We note that
∑

i∈S zi = |V| by the MIS construction. We

define Di = E[max(0, 1 − yCi
wTφ(xCi

))] − max(0, 1 −

yiw
Tφ(xi)). Therefore, deterioration of the objective due to

selecting a subset of points can be bounded as

| Cost(V, w)− Cost(S, w)| (10)

= |
1

|V|

∑

i∈S

ziE[max(0, 1− yCi
wTφ(xCi

))]

−
1

|V|

∑

i∈S

zi max(0, 1− yiw
Tφ(xi))| (11)

= |
1

|V|

∑

i∈S

ziDi| (12)

≤
1

|V|

∑

i∈S

zi| Di| . (13)

Moreover, the terms in the last summation can be bounded

as

| Di| = |
1

zi

∑

j∈N ′(xi)

max(0, 1− yjw
Tφ(xj))

−
1

zi

∑

j∈N ′(xi)

max(0, 1− yiw
Tφ(xi))| (14)

≤
1

zi

∑

j∈N ′(xi)

| max(0, 1− yjw
Tφ(xj)) (15)

−max(0, 1− yiw
Tφ(xi)| (16)

≤ ǫ (17)

where (14) follows since

E[max(0, 1− yCi
wTφ(xCi

))]

=
1

zi

∑

j∈N ′(xi)

max(0, 1− yjw
Tφ(xj))

and

max(0, 1− yiw
Tφ(xi)

=
1

zi

∑

j∈N ′(xi)

max(0, 1− yiw
Tφ(xi)) (18)

and where (17) follows since

ǫ ≥ ‖φ(xi)− φ(xj)‖ (19)

≥ | yiw
Tφ(xi)− yjw

Tφ(xj)| (20)

≥ | (1− yiw
Tφ(xi))− (1− yjw

Tφ(xj))|

≥ | max(0, 1− yiw
Tφ(xi))

−max(0, 1− yjw
Tφ(xj))| (21)

In the above, (19) follows from the assumption in Theorem

1, and (20) follows from the Cauchy-Schwarz inequality.

We can now write

| Cost(V, w)− Cost(S, w)| =
1

|V|

∑

i∈S

zi| Di|

≤
1

|V|

∑

i∈S

ziǫ ≤ ǫ
1∑

i∈S zi

∑

i∈S

zi = ǫ
(22)
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and hence | Cost(V, w)− Cost(S, w)| ≤ ǫ.

Corollary 1. Let w∗
S

denote the optimal separating hyperplane

formed using the weighted subset S , and w∗
V

denote the

optimal separating hyperplane formed using the points in V .

Then Cost(V, w∗
S
) ≤ Cost(V, w∗

V
) + 2ǫ.

Proof.

Cost(V, w∗
S) ≤ Cost(S, w∗

S) + ǫ (23)

≤ Cost(S, w∗
V) + ǫ (24)

≤ Cost(V, w∗
V) + 2ǫ, (25)

where (23) follows from Theorem 1, (24) holds because w∗
S

minimizes the SVM objective over S and thus Cost(S, w∗
S
) ≤

Cost(S, w∗
V
), and (25) follows from Theorem 1.

To conclude, in this section we have shown that applying

MIS on V ensures construction of a subset S such that

Cost(V, w∗
S
) ≤ Cost(V, w∗

V
) + 2ǫ.

C. Choosing points close to the boundary

The support vectors are the points within the margin or the

misclassified points, i.e., the points xi for which it holds that

max(0, 1 − yiw
Tφ(xi)) > 0. Training the SVM only using

the support vectors yields the same solution as training the

SVM on the whole dataset. This motivates us to only cover

the support vectors rather than the whole dataset. In order to

estimate the support vectors, we only select boundary points in

V which are the points in V with f(.) equal to 1. As described

in Sec.II-A, f(.) evaluated on a point is equal to 1 if the point

is the nearest neighbor of any points from the opposite class.

And hence we apply Alg.1 only on the points in V with f(.)
equal to 1.

IV. RESULTS

A. Adult dataset

We first evaluate our algorithms on the adult dataset from

the UCI machine learning repository. The target of the dataset

is a binary value which corresponds to whether a person

income is more or less than $50K. The dataset is divided into

training data (32562 samples) and test data (16282 samples).

The SVM is trained on the subsets with penalty parameter C =
50 while using the RBF kernel. We evaluate our Algorithm 1

in Figure 1 on the test data by plotting the error rate versus the

time to run the training algorithms. To benchmark the proposed

method, we also evaluate the performance of the core vector

machine algorithm [15] which aims to find a coreset for SVM

training as well the algorithm based on submodularity from

[17] that computes an unweighted subset. We also record the

optimal performance of running LibSVM on the entire dataset.

We further compare all the algorithms with the stratified

random selection algorithm; its results are averaged over 10

runs. The size of the selected random subset is comparable

to the size of the subset returned by MIS, which is around

3000. The figure demonstrates that the proposed algorithms are

faster than the CVM algorithm while achieving almost optimal

0 200 400 600 800 1000 1200

Time (s)

14

14.5

15

15.5

16

16.5

17

E
rr

o
r 

ra
te

 (
%

)

LibSVM using all data

MIS alg

Submodular max alg

CVM alg

Stratified random sampling

Fig. 1. Performance of SVM (error rate %) in function of training time.

accuracy. All the algorithms outperform random sampling,

which while being very fast offers relatively poor performance.

B. Census-Income dataset (KDD)

The census dataset from the UCI machine learning reposi-

tory has 199523 training samples and 99762 test samples. It

is a binary dataset of dimension 40. The dataset, like the adult

dataset, has a target variable that specifies whether the salary

of a person is above or below $50k.

In order to simulate the effect of the size of the training

data on the running time of our proposed algorithm, we plot

in Fig. 2 the runtime (including the preprocessing time for

constructing the LSH tables) versus the size of the training

data; the training datasets are formed by taking random subsets

of varying sizes from the full dataset. We also evaluate the

performance of the CVM algorithm, as well as run LibSVM

on the entire dataset. The CVM algorithm is the fastest among

the algorithms but its speed comes at the cost of relatively

higher error rate. We note that we could obtain a lower error

rate for the CVM algorithm by decreasing the stopping rate

criterion ǫ but its running time would increase drastically. (For

example, setting ǫ = 1e−6 leads to the low error rate of 5.17
but the running time goes up to 12024 s). The figure shows that

after 40000 samples of training data, using LibSVM becomes

costly. We also plot in Fig. 3 the error rate of the algorithms

versus the size of the training data. Our proposed algorithm

provided error rates very close to the optimal ones using all

the data.
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V. CONCLUSION

We presented a method for improving the speed of SVM

training via weighted subset selection of training data. In

particular, the method seeks the maximal independent set

(MIS) of the approximate k nearest neighbor graph constructed

during a preprocessing step, while assigning weights to the

selected subset. Training is done on the selected weighed

subset, and the overall performance of the obtained classifier

comes with guarantees. Simulations demonstrate that the pro-

posed algorithm enables fast SVM training with near optimal

performance.
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