
Improving the Performance of Lightweight CNN models using Minimum
Enclosing Ball Regularization

Maria Tzelepi and Anastasios Tefas
Department of Informatics

Aristotle University of Thessaloniki
Thessaloniki, Greece

Email: {mtzelepi, tefas}@csd.auth.gr

Abstract—The aim of this paper is two-fold. First, we
propose lightweight CNN models, capable of effectively
operating on-drone for various classification problems,
emerging in the context of media coverage of specific sport
events by drones, i.e. crowd, football player, and bicycle de-
tection. Subsequently, we propose a regularization method,
namely Minimum Enclosing Ball regularization, in order to
improve the generalization ability of the proposed models.
The experimental evaluation on three datasets indicates
the effectiveness of the proposed regularizer.

Index Terms—Minimum Enclosing Ball Regularization,
Convolutional Neural Networks, Drones, Deep Learning.

1. Introduction

Over the recent few years Drones, have powerfully
emerged in the media and entertainment industry. The
application fields of Drones range from entertainment to
visual surveillance, rescue within the context of natural
disasters [1], and medical emergencies [2]. Their capability
of capturing shots of inaccessible places, as well as spec-
tacular aerial shots, gradually displaces prior practices in
media production. A major issue associated with the rise
of drones is the demand of developing efficient models
for various computer vision tasks, capable of settling
the issue of the additional challenges of drone-captured
images (that is, small object size, occlusion, etc.), and
also capable of running on-drone, that is with limited
processing power.

Deep learning algorithms, [3], and especially the deep
Convolutional Neural Networks (CNN) have been proven
as one of the most effective avenues of research in com-
puter vision, due to their outstanding performance in a
plethora of computer vision tasks, [4], [5], [6], [7]. The
major reasons underlying their success lie in the Graphics
Processing Units (GPUs) computational power and afford-
ability, as well as in the availability of large annotated
datasets.

In this work, we first propose lightweight CNN models,
addresing various classification tasks involved in the con-
text of media coverage of certain sport events by drones

with increased decisional autonomy. That is, we develop
lightweight models capable of running on-drone for crowd
detection (addresing also the demand of safety), football
player detection, and bicycle detection. Our goal is to
provide semantic heatmaps by e.g. predicting for each
location within the captured scene the crowd presence,
[8]. That is, we train models with RGB input of size
e.g. 128 × 128, and then high resolution test images are
fed to the network, and using a sliding window of size
128 × 128, we compute the output of the network at the
last convolutional layer for each location. An example
of a crowd heatmap is provided in Fig. 1. We note that
is of pivotal importance for the drone to handle high
resolution images, since as we have previously mentioned,
the objects to be detected in drone-captured images are
of small size, and thus image resizing in order to render
the deployment on-drone feasible, would further shrink
them, making their detection even impossible. The above
procedure finds also application in the camera control
problem, [9], where the semantic heatmaps for each of the
aforementioned tasks, aim at assisting the algorithm for
controlling the camera of the drone for cinematography
tasks by sending error signals.

Figure 1: Crowded image and the corresponding predicted
heatmap of crowd presence.

Subsequently, we propose a novel regularizer in order
to control over-fitting and improve the performance of
the proposed lightweight models. Addressing the problem
of over-fitting, which arises due to their large capacity,
constitutes in general a pivotal issue associated with the
deep neural models. Over the past years, several regu-
larization methods have been proposed in order to pre-
vent over-fitting in neural networks, ranging from early
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stopping of the training procedure, or common regulariza-
tion methods, like L1 and L2 regularization that penalize
large weights during the network optimization, to Dropout
[10] where for each training sample, a randomly selected
subset of the activations is zeroed in each epoch, and a
generalization of it, Dropconncet [11] which instead of
activations, sets a randomly selected subset of weights
within the network to zero. Other earlier works include
weight elimination, [12], and Bayesian methods, [13]. From
a quite different viewpoint, multitask-learning [14] consti-
tutes also a way of improving the generalization ability
of a model. For example, in [15] the authors introduced
techniques developed in semi-supervised learning in the
deep learning domain. That is, they combined an unsu-
pervised regularizer with a supervised learner to perform
semi-supervised learning.

In this work, we aim at improving the generalization
ability of the proposed models, by proposing a novel regu-
larizer, namely Minimum Enclosing Ball (MEB), motivated
by the radius-margin based Support Vector Machines
(SVM), [16], [17], [18]. That is, apart from the classification
loss which aims at distinguishing the training samples
belonging to different classes, we introduce an additional
regularization loss aiming at shrinking the radius of the
minimum enclosing ball of the training samples. The
motivation behind the proposed method is that in binary
classification problems there is one class and anything
than this specific class (and correspondingly in multi-class
problems over the one-versus-all approach), and thus the
representations, especially of the negative class, may be
extremely expanded in the feature space generated by the
neural layer, as the classifier aims at distinguishing be-
tween the classes. Therefore, we propose to regularize the
classifier by forcing the training samples’ representations
to come closer to their centroid. The proposed regularizer
is generic and can be applied in several deep learning
architectures for classification purposes.

The rest of the paper is organized as follows: In Sec-
tion 2, we present the proposed regularization method.
In Section 3 we provide the implementation details and
the experimental evaluation of the proposed method, and
finally, conclusions are drawn in Section 4.

2. Minimum Enclosing Ball Regularization

In this paper, we propose to improve the performance
of the proposed lightweight models, by introducing a novel
regularization objective with its motivational roots in the
radius-margin based Support Vector Machines (SVM) [16],
[17], [18]. Particularly, in [19], it is stated that the general-
ization error bound of the max-margin SVMs depends on
not only the squared separating margin, γ2, of the posi-
tive/negative training samples, but on the radius-margin
ratio, R2/γ2, where R is the radius of the minimum en-
closing ball of all the training samples. For a fixed feature
space, the dependency of the error bound on the radius can
be ignored in the optimization procedure, since the radius,
R, is constant. However, when R is determined by the

minimum enclosing ball of the training data, the model
has the risk that the margin can be increased by simply
expanding the minimum enclosing ball of the training data
in the feature space. In order to remedy this problem, an
algorithm that optimizes the error bound taking account of
both the margin and the radius, in the context of Multiple
Kernel Learning, is proposed in [17]. In [20], the authors
also propose to incorporate a radius-margin bound as a
regularization term into the classification loss of a deep
model for 3D human activity recognition.

Towards this end, considering our binary classification
tasks, as the softmax layer aims at separating the training
samples’ representations belonging to different classes, we
propose to attach a regularization objective that aims at
shrinking the radius of the minimum enclosing ball of the
training samples, since representations, especially of the
negative class, may be extremely expanded in the feature
space generated by the neural layer.

Let X = {Xi, i = 1, . . . ,N} be the set of N training
images, and YL = {yL

i , i = 1, . . . ,N} be the set of N
corresponding representations of the deep neural layer,
L. We abbreviate as RMEB, the radius of the minimum
enclosing ball of all the training samples. The squared
radius is formally expressed by the following equation:

RMEB
2 = min

R,yL
0

R2, s.t. ‖yL
i − yL

0‖
2
2 � R2, ∀i, (1)

where yL
0 is the centroid of all the training samples yL

i .
However, this definition suffers from a major short-

coming. That is, it can not be applied in terms of mini-
batch training, since it requires the centroid of all the
training data. In order to tackle this issue, we utilize an
approximation of the above definition. We express the
radius of the minimum enclosing ball of the training data,
using the maximum pairwise distance over all pairs of
training samples. That is:

R̃2
MEB = max

i, j
‖yL

i − yL
j ‖

2
2 (2)

In [18] the authors proved that the radius RMEB is well
approximated by R̃MEB with the following inequality:

R̃MEB 6 RMEB 6
1 +
√
3

2
R̃MEB (3)

Thus, instead of minimizing the squared radius of
the smallest sphere enclosing all the training samples,
for simplicity we minimize the squared diameter that is
defined by the maximum pairwise distance over all pairs of
the training samples, since this does not affect the solution
of the minimization problem, and following also the work
in [18].

Subsequently, since the approximated radius is defined
over all the pairs of training samples, we first formulate
the following minimization problem utilizing the softmax
function over the max operator which is non-smooth,
as it is shown in [20] and then we further relax the
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approximated radius to make it suitable for mini-batch
training:

min
yL

i ∈Y
L

JMEB = min
yL

i ∈Y
L

N∑
i, j

ki j‖yL
i − yL

j ‖
2
2, (4)

where

ki j =
ea‖yL

i −yL
j ‖

2
2∑N

i, j ea‖yL
i −yL

j ‖
2
2

(5)

measures the correlation of the two samples, while
the parameter a controls the approximation degree to
max operator. When a is infinite, the approximation is
identical to the max operator, while when a = 0, ki j =

1
N2 .

The relaxed definition of eq. (4) allows for defining the
minimization objective in terms of mini-batch training,
instead of the whole dataset. That is, for a set B of
training samples’ representations of a batch, eq. (4)
becomes:

min
yL

i ∈Y
L

JMEB = min
yL

i ∈Y
L

∑
yL

i ,y
L
j ∈B

ki j‖yL
i − yL

j ‖
2
2, (6)

Thus, for a = 0, ki j =
1
|B|2

, where |B| is the cardinality of
set B, it is straightforward to show that the minimization
problem can be formulated as follows in terms of mini
batch training:

min
yL

i ∈Y
L

JMEB = min
yL

i ∈Y
L

∑
yL

i ∈B

‖yL
i − µ‖

2
2, (7)

where µ = 1
|B|

∑
yL

j ∈B
yL

j .

Either the softmax loss (cross entropy loss) or the
hinge loss can be utilized for the classification task. In
our experiments we use the softmax classifier. Thus, for
a set of N input images X = {Xi, i = 1, . . . ,N} and their
corresponding representations, YL = {yL

i , i = 1, . . . ,N}, the
softmax loss is defined as:

Ls = −
1
N

N∑
i=1

K∑
k=1

li,klog(pi,k), (8)

where K is the number of classes, li,k ∈ {0, 1} is a binary
indicator that takes the value 1 if the class label k is
the correct classification for the sample i, and pi,k is the
predicted softmax probability the sample i to belong to the
class k. The proposed regularizer can be attached to one
or multiple neural layers. Thus, for a deep neural model
of NL layers, the total regularization loss is formulated

as: Lreg_total =

NL∑
l=1

λlLregl , where Lregl is the regularization

loss, as defined in (7), for a certain layer, l, while the
parameter λl ∈ [0, 1] controls the relative importance of
the specific regularization loss. Then, the total loss in
the regularized training scheme is computed by summing
the classification loss and the total regularization loss,
Ltotal = Ls + Lreg_total. We use gradient descent to solve the

above optimization problem. We should highlight that the
proposed regularizer is generic, in the sense that it can be
attached to any neural layer, of any deep architecture, and
can be combined with various classification losses (e.g.
softmax loss, hinge loss), since it is not incorporated as an
additional term in a specific classification loss function.

We finally note that Support Vector Data Description
method, [21], inspired by the Support Vector Classifier,
proposes a MEB-like objective in the One Class Classifi-
cation problem, as the main objective in order to find the
outliers. However, the proposed regularizer, as mentioned
previously, is rooted in the radius-margin based Support
Vector Machines (SVM) [16], [17], [18], and proposes the
MEB objective as a regularization in the main classifi-
cation objective, in order to improve the generalization
ability of the binary classifier.

3. Experiments

In this section, we present the experiments performed
in order to evaluate the proposed regularization
method. Throughout this work, we use Test Accuracy
(Classification Accuracy) to evaluate the proposed
regularizer. Each experiment is repeated five times and
we report the mean value and the standard deviation,
considering the maximum value of Test Accuracy for
each experiment. The probabilistic factor is the random
weight initialization. The proposed CNN models serve as
baseline for the proposed regularization method. We also
compare the proposed regularizer with the common L1
and L2 regularizers. In the following, we first describe
the utilized CNN architecture, and the utilized datasets,
then we report the implementation details of the proposed
method, and finally we present the validation results.

3.1. CNN Models and Discussion on Speed

The proposed CNN model contains six learned con-
volutional layers. Since the input images of the utilized
datasets are of various sizes (that is, 128 × 128, 64 × 64,
and 32 × 32), we use appropriate pooling for each of
the three cases. That is, for the first case, the network
accepts RGB images of size 128 × 128 × 3. The output
of the last convolutional layer is fed to a softmax layer
which produces a distribution over the 2 classes. Each
convolutional layer except for the last one is followed
by a Parametric Rectified Linear Unit (PReLU) activation
layer which learns the parameters of the rectifiers, since
it has been proven to enhance the classification results
[22]. Max-pooling layers follow the first and the fifth
convolutional layers, while a response-normalization layer
is utilized after the first pooling layer. A Dropout layer
[23] with probability 0.5 follows the fifth convolutional
layer aiming at reducing over-fitting. An overview of the
proposed model is illustrated in Figure. 2. In the second
case, where the input size is 64×64, we remove the pooling
layer which follows the fifth convolutional layer, while in
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Figure 2: Overview of the proposed CNN architecture

the third case where the input size is 32 × 32, we also
remove the first pooling layer from the initially described
architecture.

We test the proposed model for the crowd detection
task (the one with the larger input) on a GeForce GTX
1080 GPU for various input sizes, and we compare it in
terms of frames per second (FPS) with a common baseline
model (i.e. VGG-16 [24]) for the latter’s fixed input. Since
the deployment of the detectors will be done on a drone,
we also test the performance on a state of the art low-
power GPU used for on-board drone perception, that is
an NVIDIA Jetson TX2 module with 8GB of memory.
The results are presented in Table 1. As we can see, the
proposed model operates at 49.7 fps for input of size 224×
224, against the baseline model which runs at 9.36 fps for
the same fixed input on the Jetson TX2 module, whereas
it runs at 13.1 fps for input of size 512 × 512, and at 2.1
fps for input of size 1024× 1024. We should also note that
even if we discard the fully connected layers of the VGG
model, and use only the fully-convolutional portion, the
proposed model is considerably faster. For example, the
modified fully convolutional VGG model runs at 28.16
fps for input 512 × 512 on the GTX 1080 (against 99.4 fps
of the proposed one), while for an input of size 1024×1024
it is out of memory even in the GTX 1080 (the proposed
model runs at 23.45 fps, respectively).

Model Input Jetson TX2 GeForce GTX 1080
VGG 224 × 224 9.36 89.52

Proposed 224 × 224 49.7 416.66
Proposed 512 × 512 13.1 99.4
Proposed 1024 × 1024 2.1 23.45

TABLE 1: Speed (FPS)

3.2. Datasets

In order to evaluate the performance of the pro-
posed MEB regularizer we conduct experiments on three
datasets, constructed for Crowd, Football Player, and Bi-
cycle detection. The so-called Crowd-Drone dataset con-
tains 11,840 train images of crowded scenes and non-
crowded scenes. We use 2,368 images of them as test set.
Input images are of size 128 × 128. The second dataset,
constructed for football player detection consists of 98,000
train images of football players and non-football players,
and a test set of 10,000 images. Input images are of size

32 × 32. Finally, the third dataset, namely Bicycles, con-
tains 51,200 equally distributed train images of bicycles
(bicycle with bicyclist) and non-bicycles, and a test set of
10,000 images. Input images are of size 64 × 64.

3.3. Implementation Details

The proposed CNN models were implemented using
the Caffe Deep Learning framework [25]. The learning rate
is set to 10−5, and the batch size is set to 64. The weight
decay is 0.0005, and the momentum is 0.9. All the models
are trained on an NVIDIA GeForce GTX 1080 with 8GB
of GPU memory, for 100 epochs.

As mentioned before, the proposed regularizer can be
applied on individual layers, as well as on multiple layers.
In our experiments, we apply the regularizer on all the
convolutional layers. To do this, instead of using directly
the high-dimensional features from a specific convolu-
tional layer, we attach an additional pooling layer on
each of these layers, namely Maximum Activations of
Convolutions (MAC) [26] layer that implements the max-
pooling operation over the height and width of the output
volume, for each of the 128 feature maps of the CONV5
layer, correspondingly of the 256 feature maps of the
CONV4, and so on. That is, the MAC layer, for example
on CONV5 outputs a 128-d vector for each input image.

The regularization loss is initially significantly larger
than the softmax one. Thus, in order to control the relative
importance of the contributed losses, we first set the
regularization loss parameter, λ, to 0.0001, and we fixed
it to 0.01 at the 20 epochs up to the final epoch, for all
the convolutional layers.

3.4. Experimental Results

In Table 2 we present the performance of the proposed
regularizer against the softmax-only approach, in terms of
Test Accuracy. We also compare the regularizer with the
standard L1 and L2 regularization schemes. Best results
are printed in bold. From the demonstrated results, we can
see that the proposed regularizer considerably improves
the classification performance, while it is also superior
over the L1 and L2 regularizers, which either slightly
improve the results or they harm the performance (e.g.
L1 regularizer on Bicycles dataset).

Furthermore, as we have previously mentioned, the
hinge loss could also be utilized for the classification task,
instead of the softmax classifier. To this aim, we also per-
form indicative experiments on the Crowd-Drone dataset
using the hinge loss instead of the softmax one, and we
apply the proposed regularizer. Thus, the only hinge loss
training achieves Test Accuracy 0.9488 ± 0.0009, while
the hinge loss with the MEB regularizer 0.9541 ± 0.0022.
That is, the proposed regularizer indeed exhibits superior
performance over the baseline utilizing also the hinge loss
as the classification objective.
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Training Approach Crowd-Drone Bicycles Football Player
Softmax 0.9405 ± 0.0079 0.9119 ± 0.004 0.8850 ± 0.0051

Softmax & L1 0.9435 ± 0.009 0.8991 ± 0.0079 0.8834 ± 0.005
Softmax & L2 0.9422 ± 0.005 0.9134 ± 0.0021 0.8856 ± 0.0083

Softmax & MEB 0.9541 ± 0.0072 0.9448 ± 0.0057 0.9112 ± 0.01

TABLE 2: Test Accuracy

4. Conclusions

In this paper, we first proposed lightweight deep CNN
models, for various recognition tasks involved in the con-
text of media coverage of specific sport events by multiple
drones. Specifically, lightweight models for crowd, football
player, and bicycle detection were proposed. Subsequently,
we proposed a novel Minimum Enclosing Ball regularizer,
aiming at enhancing the generalization ability of the pro-
posed models. The experimental evaluation validates the
effectiveness of the proposed regularizer.
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