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Abstract—The brute force rate-distortion optimisation based
approach used in the High Efficiency Video Coding(HEVC)
encoders to determine the best block partitioning structure for
a given content demands an excessive amount of computational
resources. In this context, this paper proposes a novel algorithm
to reduce the computational complexity of HEVC inter-prediction
using Support Vector Machines. The proposed algorithm predicts
the Coding Unit (CU) split decision of a particular block enabling
the encoder to directly encode the selected block, avoiding the
unnecessary evaluation of the remaining CU size combinations.
Experimental results demonstrate encoding time reductions of
~58% and ~50% with 2.27%, and 1.89% Bjøntegaard Delta
Bit Rate (BDBR) losses for Random Access and Low-Delay B
configurations, respectively.

Index Terms—High Efficiency Video Coding (HEVC), inter-
prediction, Coding Unit (CU), Support Vector Machine (SVM),
encoding complexity reduction

I. INTRODUCTION

The recent advancements in multimedia technologies and
mobile hand-held devices have contributed immensely towards
the increasing mobile consumption of video. As such, the
demand for video streaming services such as Netflix, Amazon,
YouTube, etc., is expected to exceed 75% of the overall
mobile data traffic by 2021 [1]. The increasing popularity of
High Definition (HD) and Ultra-High Definition (UHD) video
contents demand efficient video coding algorithms with greater
compression efficiency in order to reduce the strain on the
already congested communication networks.

In this case, High Efficiency Video Coding (HEVC)
achieves ≈50% more coding efficiency when compared with
its immediate predecessor H.264/AVC [2]. However, this in-
creased coding efficiency of HEVC comes at the cost of
high computational complexity. This is mainly due to the
brute-force Rate-Distortion (RD) optimisation based approach
used to find the optimal block partitioning structure for a
given video content. The excessive demand of computational
resources for HEVC has become a compelling challenge for
resource and energy constrained consumer electronic devices
such as mobile phones and tablets.

Addressing the aforementioned phenomenon, this paper
proposes a Support Vector Machine(SVM) based algorithm
that predicts the optimal block partitioning structure for a given
content. The proposed approach replaces the time-consuming
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Fig. 1. Partitioning structure for a frame in Kimono

brute force evaluation of partitioning structures using RD
optimisation, thereby significantly reduces the encoding time
complexity with minimal impact on the coding efficiency.

The remainder of this paper is organised as follows. Section
II provides an overview of the quadtree based block partition-
ing structure employed in HEVC. Section III describes the
related work on computational complexity reduction in HEVC
inter-prediction. Section IV introduces the proposed algorithm
followed by Section V, presenting the experimental results and
discussion. Section VI concludes the paper.

II. QUADTREE BLOCK PARTITIONING STRUCTURE IN
HEVC

HEVC employs a block-based encoding scheme similar to
that of H.264/AVC, where each frame is divided into square-
shaped blocks. However, the main processing block of HEVC,
also known as Coding Tree Unit (CTU), uses a block size of
64×64, which facilitates efficient encoding of high resolution
video content compared to H.264/AVC. A CTU can be further
sub-divided recursively into four equally sized blocks known
as Coding Units (CU). The size of a CU can vary from 64×64
to 8×8, corresponding to depth levels from 0 to 3, respectively.

During the compression loop of the encoder, for a given
CTU, all possible CU depths are analysed to compute their
respective RD costs. The depth levels that yield the minimum
RD cost are selected as the best CU size combination for the
content. For example, when analysing a CU of the size 32×32
(corresponding to depth 1), the cost of encoding the CU as a
single CU and the cost of encoding the CU as four equally
divided sub-CUs of size 16 × 16 (corresponding to depth 2)
are calculated. The CU is labelled as a “split” CU if the RD
cost of the four sub-CUs at depth 2 is smaller than RD cost
of the depth 1 CU. Otherwise, the CU is identified as a “non-
split” CU and encoded with the depth level 1 (i.e., CU size =
32×32). This partitioning takes place for all CTUs in a given
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Fig. 2. Process of data collection and model building

frame. Fig. 1 depicts an example partitioning structure for a
frame in the Kimono video sequence.

III. RELATED WORK

To address the problem of high computational complexity
in HEVC, recent literature has proposed alternative algo-
rithms that avoid the brute-force RD optimisation approach.
These algorithms can be broadly categorised into two: sta-
tistical approaches and learning-based approaches. Statistical
approaches are based on conclusions drawn from statistics-
based models, whereas learning-based approaches use machine
learning techniques to predict the optimal coding tree structure.

Statistical model based approaches are widely used in the
encoding complexity reduction, due to the simplicity of the
prediction models. For instance, Lee et al. [3] propose an
algorithm based on RD cost statistics of Inter 2N × 2N
mode and the status of SKIP and merge modes. Furthermore,
Mallikarachchi et al. [4] propose a content-adaptive approach
for fast low-delay video encoding that makes use of Inter N×
N mode motion features and RD cost thresholds. Despite
the reported encoding complexity reductions in the range of
55%, the inadequacies in the amount of data accumulated
for certain features make the split decisions less optimal for
certain video contents. The coding tree pruning algorithm
proposed by Choi and Jang [5] terminates CU splitting if
the current CU level has selected SKIP mode as the best
prediction mode. Despite the low BDBR losses, the encoding
time reductions that can be achieved is minimal ( 40%) due
to the large number of unnecessary evaluations of CU depth
levels. Similar algorithms that make use of various statistical
parameters available in the encoding loop are reported in [6]–
[8]. However, the common drawbacks of these methods can
be identified as rigid models and redundant calculations that
limit the time complexity reductions that can be achieved.

Recent advancements of machine learning have enabled the
successful use of supervised learning methods in video coding
research. As opposed to statistics-based approaches that rely
on extensive human involvement to create rule-based methods,
machine learning-based models learn from existing data with
minimal human involvement.

Grellert et al. [9] propose a flexible SVM based approach
to early terminate the CU evaluation process in the encoding
loop. Features calculated after encoding the current depth level
are used to determine when the evaluations for the next CU
depth should be continued or not. The authors report a 52.4%
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Fig. 3. Two-stage prediction model for a given CU depth

time complexity reduction for Random Access configuration,
when compared with the HM16.8 reference software. How-
ever, calculations for the current depth level are carried out for
feature calculations, leading to redundant calculations when
the CU is decided to be split. Following a similar approach,
Shen and Yu [10] propose a complexity reduction algorithm
that uses weighted SVMs. The RD costs of SKIP/MERGE and
Inter 2N × 2N modes are considered as features for the off-
line trained weighted SVMs which are used to determine the
early termination of the CU evaluation process. This method
uses rigid models for prediction of CU and requires encoding
information from the current CU depth. The decision tree
based CU size selection algorithm proposed by Correa et al.
[11] suffers from content adaptation issues due to the rigid
decision trees. Similarly, the use of weighted SVMs in the
algorithm proposed by Zhang et al. [12] achieves an average
encoding time reduction of approximately 51%. However, this
method also needs encoding information of the current depth
level as features to the models. In addition, different machine
learning techniques have been heavily used in [13]–[16] to
reduce the encoding time complexity in HEVC.

IV. PROPOSED METHOD

A. Problem Formulation

As explained in Section II, at each CU depth level it is
decided either to split the CU or to encode the CU in the
current size. This formulates a binary classification problem
with classes split and non-split at each CU depth level: 0, 1,
and 2. Since the minimum CU size is 8× 8 that corresponds
to depth 3, there is no requirement to take the split decision
at CU depth 3.

There are many classification algorithms available in ma-
chine learning, such as SVMs, decision trees, and neural
networks. The problem of time complexity reduction in HEVC
inter-prediction relies on the fact that the model prediction
time to be considerably less than the brute-force RD optimi-
sation time. SVMs can handle binary classification problems
with significant computational advantages [17]. Hence, in this
work, SVMs were used.

Fig. 2 and Fig. 3 depict the model building and the two-stage
prediction process, respectively. The following sub-sections
explain the components in detail.
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TABLE I
F-SCORE VALUES FOR DEPTH 0

Feature F-
Score

CTU A-avg. depth 0.1862
CTU A-max. depth 0.1842

Coloc. CU-max. depth 0.1833
Coloc. CU-avg. depth 0.1748

QP 0.1599
CTU AR-max. depth 0.1010

CTU L-avg. depth 0.0938
CTU L-max. depth 0.0930

CTU A-bits 0.0922
CTU AR-avg. Depth 0.0876

TABLE II
F-SCORE VALUES FOR DEPTH 1

Feature F-
Score

Coloc. CU-max. depth 0.1932
Coloc. CU-avg. depth 0.1777

QP 0.1291
CTU L-max. depth 0.1046
CTU A-max. depth 0.0977
CTU L-avg. depth 0.0943
CTU A-avg. depth 0.0865

CTU L-bits 0.0722
CTU A-bits 0.0708

CTU AR-max. depth 0.0619

B. Early Split and Early Termination of CUs

As depicted in Fig. 3, the proposed algorithm operates in
two stages: (1) prior to (blocks in yellow) and; (2) after (blocks
in blue) the encoding of the current depth level. In the first
stage, offline-trained SVMs are used, whereas in the second
stage, it is checked if the SPLIT mode is selected as the best
mode in the current depth level. Our initial analysis showed
that using offline models at depth 2 significantly degraded
the encoding efficiency. Hence, the first stage offline SVMs
operate only for depths 0 and 1, while the second stage
operates in all three levels, i.e., 0, 1, and 2.

1) Training Data Collection: To decide on the optimal fea-
ture set for the SVMs, a feature analysis was carried out. The
sample data were gathered from a set of training sequences
that have resolutions ranging from 416× 240 to 2560× 1600.
These training sequences include BlowingBubbles(416×240),
BQMall(832×480), Kimono(1920×1080), and Traffic(2560×
1600). Data were gathered by encoding twenty frames from
each sequence for QP ∈ {22, 27, 32, 37}.

All training and cross-validation sets were randomly taken
and they included equal numbers of data from each sequence
in order to ensure that the data samples were representative
of all the sequences used in training. Since SVMs perform
poorly for unbalanced data [18], equal numbers of instances
for split and non-split classes were taken.

2) Feature Selection: A multitude of possible features were
analysed in order to find the best features for the split decision
prediction for CU depth levels 0 and 1.

The set of features used for the analysis included informa-
tion from the neighbouring CTUs (CTU above, CTU left, CTU
above right, and CTU above left), colocated CU, and features
calculated from the current CU. Specifically, the set of features
considered include:

• Depth information from the neighbouring CTUs
• Depth information from the colocated CU
• current quantization parameter (QP) value
• current CU RD-cost for the size 2N × 2N
• texture information from current CU (homogeneity, con-

trast, and energy)
• local range values (mean, median, and standard deviation)
• Encoding information from the neighbouring CTUs

The F-score was calculated for all these features, in order
to select the best features. F-score is given by;

Fscore(i) =
(x̄+

i − x̄i)
2 + (x̄−

i − x̄i)
2

1
P−1

P∑
n=1

(x+
n,i − x+

i )2 + 1
N−1

N∑
n=1

(x−
n,i − x−

i )2
(1)

where x̄i, x̄+
i , x̄−

i , P , and N refer to the average of the
ith feature, average of the positive instances, average of the
negative instances, the number of positive instances, and the
number of negative instances, respectively. x+

n,i and x−
n,i refer

to the values of feature i in nth positive and negative instances,
respectively.

Tables I and II depict the F-score values for the depths 0
and 1, respectively. In the tables, CTU A, CTU L, and CTU
AR refer to CTUs Above, Left, and Above Right to the current
CU, respectively.

Upon the analysis of the F-score values of the aforemen-
tioned features, the following observations were made.

• for the two depth levels, different sets of features scored
highest f-score values

• texture information of the current CU contributed less in
the inter-prediction CU split decision

• depth values of the neighbouring and colocated CUs
scored high in both depth levels, indicating its importance
in inter-prediction CU split decision

• QP value was among the top features for both depths
(fifth feature in depth 0 and third feature in depths 1)

From the above observations, features were selected to train
one SVM per depth level. The number of features selected
for each model was limited to 4, in order to minimise the
additional overhead required to obtain the feature values for
the SVMs.

The features that gave highest F-score values were selected
for both depth levels. When both average and maximum depths
of a given neighbour were among the top features, only the
feature that scored higher was taken. Table III shows the
features that were selected for the SVMs.

3) Model Training and Hyper Parameter Tuning: Radial
Basis Function(RBF) can handle non-linear decision bound-
aries and it works well with small numbers of feature [19].
Therefore, RBF was selected as the kernel function for SVMs
in this work.

The associated hyper-parameters of SVM with RBF kernel;
cost parameter(C) and gamma parameter(G), were tuned using
a grid search. Values for the multiples of 2, ranging from 2−7

to 27 were analysed to arrive at the optimal values.
The number of training samples(NTr) was also regarded as

a hyper-parameter. A range of values was checked for the NTr

at both depth levels. The number of support vectors increase

TABLE III
SELECTED FEATURES FOR THE DEPTH LEVELS

Depth 0 Depth 1
CTU A-avg depth Coloc. CU-max depth
Coloc. CU-max depth QP
QP CTU L-max depth
CTU AR-max. depth CTU A-max depth
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TABLE IV
COMPLEXITY REDUCTION PERFORMANCE CODING EFFICIENCY (LOW DELAY B)

Sequence Proposed (t=0.7)
vs HM

Proposed (t=0.6)
vs HM

Grellert et al. [9]
(threshold=0.5)

vs HM

Grellert et al. [9]
(threshold=0.7)

vs HM

Mallikarachchi et
al. [4] vs HM

∆T
(%)

BDBR
(%)

BD-
PSNR
(dB)

∆T
(%)

BDBR
(%)

BD-
PSNR
(dB)

∆T
(%)

BDBR
(%)

BD-
PSNR
(dB)

∆T
(%)

BDBR
(%)

BD-
PSNR
(dB)

∆T
(%)

BDBR
(%)

BD-
PSNR
(dB)

PeopleOnStreet 26.99 0.37 -0.02 43.63 1.51 -0.06 21.77 0.93 -0.04 29.29 2.91 -0.13 25.07 0.86 -0.03
BQTerrace 45.43 0.42 -0.01 52.28 2.46 -0.03 47.84 0.57 -0.01 51.68 1.08 -0.02 41.38 0.92 -0.01
Cactus 40.28 0.74 -0.02 50.65 3.26 -0.06 44.38 1.51 -0.03 51.12 3.38 -0.07 31.75 0.99 -0.02
ParkScene 47.28 0.51 -0.02 55.34 2.21 -0.07 46.60 0.76 -0.02 48.95 1.81 -0.05 42.53 1.07 -0.03
BasketBallDrill 30.71 0.32 -0.01 40.62 1.98 -0.08 37.09 1.04 -0.04 44.29 3.31 -0.12 34.32 0.88 -0.03
RaceHorses(C) 24.67 0.37 -0.01 38.69 1.82 -0.07 22.83 0.67 -0.02 31.83 2.24 -0.08 30.10 0.81 -0.03
PartyScene 30.10 0.26 -0.01 42.33 1.24 -0.05 29.21 0.51 -0.02 37.27 1.48 -0.06 32.36 0.89 -0.03
BasketBallPass 29.07 0.32 -0.01 36.01 0.84 -0.04 25.63 0.90 -0.04 32.34 2.48 -0.12 27.93 0.77 -0.04
BQSquare 29.84 0.21 -0.01 38.93 1.14 -0.04 34.26 0.50 -0.02 40.03 1.53 -0.05 31.05 1.08 -0.03
Johnny 66.35 0.22 -0.00 67.81 1.97 -0.03 68.73 0.94 -0.02 70.18 1.67 -0.04 56.56 1.69 -0.04
FourPeople 60.71 0.42 -0.01 64.25 2.43 -0.07 62.75 1.05 -0.04 65.38 2.56 -0.08 52.26 1.40 -0.04
KristenAndSara 61.75 0.16 -0.01 66.39 1.86 -0.05 65.13 0.42 -0.01 67.76 1.41 -0.04 52.81 1.78 -0.05
Average 41.10 0.36 -0.01 49.74 1.89 -0.05 42.19 0.82 -0.03 47.51 2.16 -0.07 38.18 1.10 -0.03

TABLE V
COMPLEXITY REDUCTION PERFORMANCE CODING EFFICIENCY (RANDOM ACCESS)

Sequence Proposed (t=0.7) vs HM Proposed (t=0.6) vs HM Grellert et al. [9]
(threshold = 0.7) vs

HM

Mallikarachchi et al. [4]
vs HM

∆T(%) BD-Rate
(%)

BD-
PSNR(dB)

∆T
(%)

BD-Rate
(%)

BD-
PSNR(dB)

∆T
(%)

BD-Rate
(%)

BD-
PSNR(dB)

∆T
(%)

BD-Rate
(%)

BD-
PSNR(dB)

PopleOnStreet 36.10 0.84 -0.04 56.62 1.28 -0.02 23.85 2.23 -0.09 25.66 0.79 -0.03
BQTerrace 56.62 1.28 -0.02 62.37 3.44 -0.04 51.43 1.11 -0.02 41.82 0.62 -0.01
Cactus 49.35 1.03 -0.02 57.43 3.71 -0.07 51.81 1.80 -0.04 40.09 0.58 -0.01
ParkScene 53.38 0.82 -0.02 60.03 2.85 -0.08 54.66 0.91 -0.03 43.33 0.73 -0.02
BasketBallDrill 49.54 0.68 -0.03 57.32 2.84 -0.11 46.28 1.59 -0.06 46.28 1.59 -0.06
RaceHorses(C) 32.54 0.77 -0.03 46.69 2.50 -0.09 34.25 1.77 -0.06 30.20 0.95 -0.03
PartyScene 41.64 0.75 -0.03 48.42 1.50 -0.06 42.97 1.17 -0.05 31.63 0.56 -0.02
BasketBallPass 30.66 0.67 -0.03 42.54 1.24 -0.06 35.60 1.84 -0.08 30.93 0.61 -0.03
BQSquare 46.44 0.56 -0.02 52.96 1.16 -0.04 49.55 0.78 -0.03 45.28 0.57 -0.02
Johnny 72.83 0.49 -0.01 75.12 2.50 -0.06 72.22 0.45 -0.01 56.12 0.33 -0.01
FourPeople 69.67 0.43 -0.02 69.79 1.82 -0.06 68.40 0.86 -0.03 52.44 0.35 -0.01
KristenAndSara 68.89 0.52 -0.02 71.07 2.42 -0.07 70.76 0.74 -0.02 54.56 0.48 -0.01
Average 50.64 0.74 -0.02 58.36 2.27 -0.06 50.15 1.27 -0.04 41.53 0.68 -0.02

TABLE VI
HYPER-PARAMETER VALUES OF THE SVMS

Parameter Depth 0 Depth 1
Cost Parameter (C) 4 64
Gamma Parameter (G) 2−7 0.5
Number of training Data 400 600

with the size of the training data, which leads to higher
SVM prediction time. In order to ensure this does not affect
the speed of SVM prediction, a maximum of 1200 training
samples were tested for NTr. A separate cross-validation set
consisting of 600 data samples was used at each depth level.
The model accuracy was used to determine the best hyper-
parameter values and the selected hyper-parameters following
the grid search are shown in Table VI.

4) Predicting the CU size using Support Vector Machines
and SKIP mode: When encoding a CU at either depth level
0 or 1, the corresponding features are retrieved during the
encoding process. These feature values are sent to the SVM
to predict the decision for the CU. If the model predicts to
split the CU, current level calculations are skipped.

If the model prediction decision is non-split or when the CU
depth is 2, the current depth computations are performed. If the

best mode for the current level is SKIP, further processing of
the CU is terminated. This is because, SKIP mode corresponds
to static image regions with no residual [20].

5) Computational complexity and coding efficiency trade-
off : The proposed method allows to tune the decision thresh-
old of SVMs(t) to trade-off the computational complexity with
the coding efficiency. This gives the flexibility to achieve the
required levels of complexity reduction and coding efficiency
depending on the application.

V. EXPERIMENTAL RESULTS

The proposed algorithm was implemented in HM 16.8 [21]
using the optimised SVM library LibSVM [19] for SVM im-
plementations. Computational complexity reductions for Low-
Delay B and Random Access configurations were analysed to
present the performance of the proposed method, following
the HEVC common test configurations [22].

The experimental results are presented for the test sequences
identified in [22] that cover a range of texture and motion
complexities. However, the sequences used for SVM training
are not presented in the evaluation results. The performance of
the algorithm is compared with two state-of-the-art methods.
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The algorithm proposed in [9] represents a machine learning
based approach whereas the algorithm in [4] represents a sta-
tistical approach in the recent literature. The time complexity
reduction ∆T (%) is evaluated with,

∆T(%) =
(THM − Ti)

THM
× 100, (2)

where THM , and Ti are the encoding times of the HM
reference encoder and the corresponding algorithm, respec-
tively, for QP ∈ {22, 27, 32, 37}. The coding efficiency loss
is measured using the Bjøntegaard Delta Bit Rate(BDBR)
increase [23].

Table IV gives results for two values of the complexity con-
trol parameter, t ∈ {0.6, 0.7} for Low-Delay B configuration.
It can be observed that the proposed method with t=0.7 gives
41.1% time complexity reduction with a negligible BDBR
loss of 0.36%. When t=0.6, it gives higher time complexity
reduction of 49.74% with an increased BDBR loss of 1.89%.
As it can be observed, the parameter t gives the flexibility to
the user to trade-off the computational complexity with the
coding efficiency. The proposed method with t=0.7 outper-
forms [9] with less BDBR loss at approximately equal time
complexity reduction, when threshold for [9] is set at 0.5. With
t=0.6, the proposed method has increased time gain, while
[9](with threshold=0.7) has less time gain at higher BDBR loss
than those of the proposed method. When t=0.6, the proposed
method outperforms [4] both in terms of complexity reduction
and BDBR. Further, the method in [4] does not offer flexibility
to trade-off computational complexity and coding efficiency.

Table V gives results for the Random Access configuration.
It can be observed that the proposed method with t=0.7
outperforms both state-of-the-art methods with a negligible
coding loss. Furthermore, when t=0.6 the proposed method
reports a significant time complexity reduction of 58.36% at
a negligible BDBR loss of 2.27%.

From the overall performance evaluation, it can be observed
that the proposed method can achieve higher time complexity
reductions at less BDBR losses when compared with the
benchmark methods.

VI. CONCLUSION

This paper introduced a novel complexity reduction algo-
rithm for HEVC inter-prediction, replacing the brute-force
RD optimisation approach. The experimental results based
on Random Access and Low Delay B configurations show
significant time complexity reductions outperforming the state-
of-the-art methods with negligible BDBR losses. Additionally,
the proposed method also allows the user to trade-off the com-
putational complexity with the coding efficiency by adjusting
the SVM decision threshold t. This gives flexibility to the
user to achieve required levels of time complexity reduction
and BDBR loss depending on the application.

The future work will focus on exploiting the possibility to
add a model to depth 2 for increased time gains, while main-
taining the coding efficiency. Further, possibility of extending
the work for other coding structures such as Prediction Units
and Transform Units will also be considered.
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