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Abstract—This paper proposes a novel fully neural network
based voice activity detection (VAD) method that estimates
whether each speech segment is speech or non-speech even in very
low signal-to-noise ratio (SNR) environments. Our innovation is
to improve context-awareness of speech variability by introducing
multiple auxiliary networks into the neural VAD framework.
While previous studies reported that phonetic-aware auxiliary
features extracted from a phoneme recognition network can im-
prove VAD performance, none examined other effective auxiliary
features for enhancing noise robustness. Thus, this paper present
a neural VAD that uses auxiliary features extracted from not only
the phoneme recognition network but also a speech enhancement
network and an acoustic scene classification network. The last
two networks are expected to improve context-awareness even
in extremely low SNR environments since they can extract de-
noised speech awareness and noisy environment awareness. In
addition, we expect that combining these multiple auxiliary
features yield synergistic improvements in VAD performance.
Experiments verify the superiority of the proposed method in
very low SNR environments.

I. INTRODUCTION

Voice activity detection (VAD) which determines whether
an acoustic segment is a speech or non-speech is essential
for various speech applications such as automatic speech
recognition (ASR), speaker recognition, and spoken language
identification. One of the most important aspect for VAD is
noise robustness in various environments because it is required
to be used in any places and any environments.

Many VAD methods have been studied to achieve greater
noise robustness. The basic method is to threshold time-
domain energy [1]. While it performs well in clean envi-
ronments, it is very weak against noise. Therefore, the main
approach to VAD involves supervised learning. Likelihood-
ratio-based methods that use generative models have been
examined [2], [3]. In addition, discriminative models that
uses support vector machine and conditional random fields
have been introduced [4]. In recent studies, the fully neural
network based VAD (neural VAD) has shown significant
performance improvement [5]–[11]. One strength of neural
VAD methods is their flexible capture of speech variability
by using non-linear transformational functions such as, deep
neural networks (DNNs) [5]–[7], recurrent neural networks

(RNNs) [8], [9], and convolutional neural networks (CNNs)
[10]. In particular, long short-term memory RNNs (LSTM-
RNNs) can well handle the VAD problem since they can
flexibly take long-range context information into consideration
[11].

Although neural VAD schemes trained with multi-condition
data sets offer significantly improved VAD performance, they
falter when challenged with low signal-to-noise ratio (SNR)
environments. In fact, it remains difficult to realize accurate
VAD in very low SNR environments even if matched con-
dition data sets can be prepared for training. In order to
mitigate this problem, we focus on an approach that utilizes
auxiliary features to enhance the context-awareness of speech
variability. Some previous neural VAD methods used phonetic-
aware auxiliary features extracted from phoneme recognition
to improve VAD performance in noisy environments [12], [13].
However, no study has examined what other auxiliary features
would be effective in achieving noise-robustness. In addition,
the effect of combining multiple auxiliary features has not
been addressed.

In this paper, we propose a context-aware neural VAD
scheme that leverages multiple auxiliary features extracted
from not only the phoneme recognition network, but also a
speech enhancement network and an acoustic scene classifica-
tion network. The last two are expected to improve context-
awareness in very low SNR environments since they can
extract de-noised speech awareness and noisy environment
awareness. Inspired by the success of LSTM-RNN in VAD
[11], we use just LSTM-RNNs to compose the auxiliary and
main networks. Experiments show that each auxiliary network
is effective for improving VAD performance in very low SNR
environments. We also reveal that combining them provides a
synergistic improvement in VAD performance.

II. RELATED WORK

This section briefly describes fully neural network based
methods for phoneme recognition, speech enhancement and
acoustic scene classification. In addition, we present related
work in which the networks are used for extracting auxiliary
features in isolation.
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Phoneme recognition: In the ASR field, senone-based acous-
tic models are widely used for phoneme recognition. A
senone represents a frame-level state within context-dependent
phones. Many studies have introduced neural networks to
senone-based acoustic models since they can attain significant
performance superiority compared to Gaussian mixture model
based methods [14], [15]. Senone-based acoustic models are
currently being utilized for extracting phonetic-awareness fea-
tures in speaker recognition [16], spoken language identifica-
tion [17], and other speech based applications [18], [19].
Speech enhancement: There are two main approaches to
neural network based speech enhancement. The first uses non-
linear mapping to convert noisy speech into clean speech [20]–
[22]. The second estimates a soft mask that can eliminate noise
interference [23]–[25]. This paper employs the first approach
since it can extract de-noised speech awareness more directly.
Previous studies combined neural speech enhancement with
other speech applications for joint learning of front-end and
back-end systems [26], [27]. However, no study has leveraged
neural speech enhancement for auxiliary feature extraction.
Acoustic scene classification: Acoustic scene classification
is now receiving a lot of attention. In contrast to frame-by-
frame estimation such as used in phoneme recognition and
speech enhancement, acoustic scene classification estimates
a scene label from the entire input signal. Therefore, neural
network based acoustic scene classification is often modeled
by combining pooling or self-attention with RNNs or CNNs
[28]–[31]. To the best of our knowledge, this paper is the
first to utilize acoustic scene classification for auxiliary feature
extraction in the speech field. The proposed method trains
acoustic scene classification so as to discriminate the type of
noisy environment (station, car, crowd, clean, etc.).

III. LSTM-RNN BASED VOICE ACTIVITY DETECTION

This section describes LSTM-RNN based VAD as a base-
line method [9], [11]. VAD demands the estimation of state
sequence S = {s1, · · · , sT } from input acoustic feature
sequence X = {x1, · · · ,xT } in a frame-by-frame manner
where the t-th state st represents either speech state or non-
speech state. LSTM-RNN based VAD uses LSTM-RNN to
estimate the conditional probability of S given X , thus it can
utilize long-range input information from start-of-utterance to
the currently-being-processed frame. The conditional proba-
bility is defined as

P (S|X,θ) =
T∏

t=1

P (st|x1, · · · ,xt,θ), (1)

where θ is the model parameter. The t-th predictive probability
is computed as

P (st|x1, · · · ,xt,θ) = SOFTMAX(zt;θ), (2)

zt = LSTM(x1, · · · ,xt;θ)

= LSTM(xt, zt−1;θ),
(3)

where LSTM() is a nonlinear transformational function based
on unidirectional LSTM-RNNs and SOFTMAX() is a linear
transformational function with softmax activation.

The model parameter can be optimized by

θ̂ = arg min
θ

−
∑

(X,S)∈Dvad

logP (S|X,θ), (4)

where Dvad represents a training data set.

IV. CONTEXT-AWARE NEURAL VOICE ACTIVITY
DETECTION USING AUXILIARY NETWORKS

This section details context-aware neural VAD using auxil-
iary networks for phoneme recognition, speech enhancement
and acoustic scene classification. The context-aware neural
VAD is composed of three auxiliary networks and one main
network. Auxiliary networks perform phoneme classification,
speech enhancement and acoustic scene classification, and
extract auxiliary features from the input acoustic features. The
main network estimates the conditional probability of a state
sequence from both input acoustic features and the auxiliary
features. The context-aware neural VAD models conditional
probability of state sequence S = {s1, · · · , sT } given acoustic
feature sequence X = {x1, · · · ,xT } as follows

P (S|X,Λ,θ) =
T∏

t=1

P (st|x1, · · · ,xt,Λ,θ)

=
T∏

t=1

P (st|x1, · · · ,xt, c
pr
t , cset , casct ,Λ,θ)

(5)

where Λ = {λpr,λse,λasc} is the model parameters for the
auxiliary networks and θ represents model parameter of the
main network. λpr, λse, λasc represent model parameters of
the auxiliary networks for a phoneme recognition, a speech
enhancement and an acoustic scene classification. cprt , cset , casct

are the t-th auxiliary features extracted from the auxiliary
networks for phoneme recognition, speech enhancement and
acoustic scene classification, respectively. The network struc-
ture of context-aware neural VAD composed by LSTM-RNNs
is presented in Fig. 1. We detail each network structure and
the optimization procedure in the following subsections.

A. Network strucutre

Auxiliary network for phoneme recognition: For phoneme
recognition, we use neural networks to model the conditional
probability of senone sequence W = {w1, · · · ,wT } given
input acoustic feature sequence X = {x1, · · · ,xT }. The
conditional probability is defined as

P (W |X,θpr) =
T∏

t=1

P (wt|x1, · · · ,xt,λ
pr). (6)

The t-th predictive probability is calculated as

P (wt|x1, · · · ,xt,θ
pr) = SOFTMAX(cprt ;λpr), (7)

cprt = LSTM(x1, · · · ,xt;λ
pr)

= LSTM(xt, c
pr
t−1;λ

pr),
(8)

where cprt represents a context vector that embeds information
effective in determining the t-th phoneme state.
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Fig. 1. Network structure of context-aware neural VAD.

Auxiliary network for speech enhancement: For speech
enhancement, we use neural networks to model a re-
gression problem that estimates de-noised acoustic features
X̄ = {x̄1, · · · , x̄T } from input acoustic features X =
{x1, · · · ,xT }. The t-th de-noised acoustic feature x̄t is esti-
mated by

x̄t = LINEAR(cset ;λse), (9)

cset = LSTM(x1, · · · ,xt;λ
se)

= LSTM(xt, c
se
t−1;λ

se),
(10)

where LINEAR() represents the linear transformational func-
tion. cset represents a context vector that embeds information
effective in estimating the t-th de-noised acoustic feature.
Auxiliary network for acoustic scene classification: For
acoustic scene classification, we use neural networks to model
the conditional probability of scene label L ∈ L from an input
acoustic features X = {x1, · · · ,xT } where L represents
acoustic scene sets. The conditional probability is calculated
by

P (L|X) = SOFTMAX(U ;λasc), (11)

U = SelfAttention(casc1 , · · · , cascT ;λasc), (12)

casct = LSTM(x1, · · · ,xt;λ
asc)

= LSTM(xt, c
asc
t−1;λ

asc),
(13)

where SelfAttention() is a function that summarizes frame-
level vectors as one vector using the self-attention mechanism
[30]. casct represents a context vector that embeds information
effective in estimating the acoustic scene label.
Main network: The main network estimates frame-level
predictive probability from both input acoustic features and
auxiliary features extracted from the auxiliary networks. The
t-th predictive probability is calculated as

P (st|x1, · · · ,xt,Λ,θ) = SOFTMAX(ht;θ), (14)

ht = LSTM(u1, · · · ,ut;θ)

= LSTM(ut,ht−1;θ),
(15)

ut = [x⊤
t , c

pr
t

⊤
, cset

⊤, casct
⊤]⊤, (16)

where ut is the t-th concatenated vector of both an input
acoustic feature and the auxiliary features extracted from
the auxiliary networks. While LSTM-RNN based VAD only
handles input acoustic features, context-aware neural VAD
handles the concatenated vector. This enables us to efficiently
take multiple context-awareness features into consideration.

B. Optimization Procedure

The context-aware neural VAD is trained in two steps. In
the first step, the auxiliary networks are initially trained using
data sets prepared for individual auxiliary tasks. The model
parameters λpr, λse, λasc are optimized by

λ̂pr = arg min
λpr

−
∑

(X,W )∈Dpr

logP (W |X,λpr), (17)

λ̂se = arg min
λse

∑
(X,X̄)∈Dnr

|X|∑
t=1

|x̄t − xt|2, (18)

λ̂asc = arg min
λasc

−
∑

(X,L)∈Dasc

logP (L|X,λasc), (19)

where Dpr, Dse, Dasc are training data sets for phoneme
recognition, speech enhancement and acoustic scene classi-
fication, respectively.

In the second step, the main network is trained using a data
set for VAD while preserving the model parameters for the
auxiliary networks. Thus, model parameter θ is optimized by

θ̂ = arg min
θ

−
∑

(X,S)∈Dvad

logP (S|X, Λ̂,θ), (20)

where Λ̂ represents {λ̂pr, λ̂se, λ̂asc} and Dvad is the training
data set for VAD.

V. EXPERIMENTS

Our experiments used a large scale Japanese training data
set. First, we prepared a home-made 1,500 hour clean speech
data set with manual transcriptions; senone states and VAD
states were automatically annotated using LSTM acoustic
models with 3,072 senone states trained from the clean speech
data set. Note that speech/non-speech states can be converted
from the senone states. Next, we created a noisy speech data
set by synthesizing 120 manually-constructed noise types (car,
shopping mall, factory, etc.) to the clean speech data set; SNR
levels were randomly varied between -10 dB to 30 dB. Both
the clean and noisy speech data sets were used for learning
VAD and phoneme recognition. A parallel data set of clean
speech and noisy speech was employed for learning speech
enhancement. The noisy speech data set, SNR under 0 dB,
was leveraged for learning acoustic scene classification. In this
case, noise type corresponds to acoustic scene. The sampling
rate of all data sets was 16 kHz. Table 1 details each training
data set.

For testing, we also prepared a clean data set that was not
included in the training data set. The data set included 5,040
utterances and its VAD states were manually annotated. The
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TABLE II
EXPERIMENTAL RESULTS IN TERMS OF AUC (%).

Noise SNR DNN-VAD LSTM-VAD PR-LSTM-VAD SE-LSTM-VAD ASC-LSTM-VAD PR-SE-ASC-LSTM-VAD
Crowd -10 dB 76.35 89.96 92.13 91.36 91.05 93.14

-5 dB 86.83 95.56 96.75 96.65 96.21 97.28
0 dB 94.45 98.25 98.82 98.81 98.35 99.11
5 dB 97.70 99.30 99.52 99.51 99.32 99.62

10 dB 98.85 99.67 99.77 99.74 99.66 99.80
Station -10 dB 81.67 90.34 90.82 91.22 90.88 92.18

-5 dB 89.01 95.47 95.85 96.00 95.78 96.54
0 dB 94.42 98.01 98.32 98.54 98.24 98.85
5 dB 97.25 99.03 99.24 99.30 99.05 99.40

10 dB 98.53 99.49 99.62 99.63 99.44 99.68

TABLE I
TRAINING DATA SETS.

Size (hours)
Clean speech data set 1,500
Data set for VAD: Dvad 10,500
Data set for phoneme recognition: Dpr 10,500
Data set for speech enhancement: Dse 9,000
Data set for acoustic scene classification: Dasc 3,000

evaluation data set was prepared by corrupting the utterances
with two unseen noise types (crowd and station) at 6 noise
levels; i.e., SNR values of -10 dB, -5 dB, 0 dB, 5 dB, 10 dB.

A. Setups

Our experiments evaluated 6 VAD methods. In each method,
we used 38 dimensional mel-frequency cepstrum coeffi-
cients (12 MFCC, 12 ∆MFCC, 12∆∆MFCC, ∆power and
∆∆power) as acoustic features; they were extracted using
20 msec windows shifted by 10 msec. Additionally, 418
dimensional acoustic features were formed by stacking the
current processed frame and its ±5 left-right context.

As baselines, we constructed “DNN-VAD” (5-layer sigmoid
non-linear function with 256 units [6]), and “LSTM-VAD” (3-
layer LSTM-RNN with 256 units [9]). For DNN-VAD, we in-
troduced post-processing to smooth outputs since DNN cannot
consider long-range information. Both baselines were trained
using only the data set for VAD. As variants of the proposed
method, we constructed “PR-LSTM-VAD”, “SE-LSTM-VAD”
and “ASC-LSTM-VAD”; they individually utilized an auxil-
iary network for phoneme recognition, speech enhancement,
and acoustic scene classification. We also constructed “PR-
SE-ASC-LSTM-VAD”; it utilizes the three auxiliary networks,
simultaneously. The auxiliary networks and main network
consisted of 3-layer LSTM-RNN with 256 units. To optimize
the individual methods, we used Adam optimizer with default
settings. For the mini-batch training, we partitioned each
speech into 400 ms and the mini-batch size was set to 64.
Note that a part of the training data set were used for early
stopping.

B. Results

Experimental results in terms of the area under receive
operating characteristic curve (AUC) [32] are shown in Table
2. We constructed five models for each setups and evaluated
averaged results. First, LSTM-VAD outperformed DNN-VAD
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Fig. 2. VAD results for crowd noise at -10 dB SNR.

in all SNR environments even though LSTM-VAD did not
use post-processing. This is due to its excellent ability to
consider long-range context information. Next, PR-LSTM-
VAD, SE-LSTM-VAD and ASC-LSTM-VAD yielded VAD
performance improvements compared with LSTM-VAD in
all conditions. In particular, VAD performance in low SNR
environments was significantly improved by introducing the
auxiliary networks. This indicates that phonetic awareness,
de-noised speech awareness, and noisy environment awareness
are effective in enhancing VAD performance. The experiments
showed that phoneme awareness was the most effective in the
crowd noise environment, while de-noised speech awareness
was most effective in the station noise environment. These
results suggest that the effectiveness of context-awareness
depends on the noise environments. The highest AUC results
were obtained by PR-SE-ASC-LSTM-VAD. This verifies that
combining multiple context-awareness is effective.

Figure 2 shows typical results for crowd noise environ-
ment with SNR of -10 dB. The result shows DNN-VAD
could not estimate speech/non-speech segments at all. LSTM-
VAD and PR-SE-ASC-LSTM-VAD correctly estimated speech
segments. In particular, PR-SE-ASC-LSTM-VAD could more
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precisely identify speech/non-speech boundaries than LSTM-
VAD.

VI. CONCLUSIONS

This paper proposed a context-aware neural VAD scheme
that utilizes the power of auxiliary networks for phoneme
recognition, speech enhancement and acoustic scene clas-
sification to improve VAD performance in very low SNR
environments. The strength of the proposed method is to
simultaneously leverage phonetic awareness, de-noised speech
awareness, and noisy environment awareness (extracted by
auxiliary networks) for detecting speech/non-speech segments.
Experiments showed that each type of context-awareness
was effective in improving VAD performance in low SNR
environments. Furthermore, the highest VAD performance
was attained by simultaneously utilizing all types of context-
awareness.
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