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Abstract—Segmentation/diarization of audio recordings using
a network of ad-hoc mobile arrays and the spatial information
gathered is a part of acoustic scene analysis. In this ad-hoc mobile
array network, we assume fine (sample level) synchronization of
the signals only at each mobile node and a gross synchronization
(frame level) across different nodes is sufficient. We compute
spatial features at each node in a distributed manner without the
overhead of signal data aggregation between mobile devices. The
spatial features are then modeled jointly using a Dirichlet mixture
model, and the posterior probabilities of the mixture components
are used to derive the segmentation information. Experiments on
real life recordings in a reverberant room using a network of
randomly placed mobile phones has shown a diarization error
rate of less than 14% even with overlapped talkers.

Index Terms—Diarization, Dirichlet distribution, steered re-
sponse power, acoustic sensor network, mobile devices.

I. INTRODUCTION

Ad-hoc network of microphone arrays [1] is an interesting

technology for speech and audio applications due to the

improved spatial coverage and the path diversity, which can

be used to improve the performance of applications such

as speech enhancement, recognition, segmentation/diarization

etc. However, such a setup is characterized by asynchronous

recording at different sensor nodes, although microphones at

the same node can record synchronously. Random placement

of sensor nodes is also a challenge for aggregating their

individual signals, without the actual geometry of their place-

ment. In this paper, we consider one specific task of speech

segmentation in a meeting scenario; i.e., “who spoke when?”

in a multi-channel audio recording of multiple speakers.

Methods based on spectral features, spatial features or a

combination of both have been proposed for multi-channel

signal diarization of audio recordings [2]–[4]. However, a

single array of microphones is the commonly used approach.

Audio/speaker diarization using an ad-hoc microphone net-

work has not been attempted. In this paper, we consider the

segmentation/diarization of audio recordings using the spatial

features alone, but it can be augmented using spectral features

to obtain further audio intelligence.

Several solutions have been proposed utilizing spatial fea-

tures, such as the time-difference-of-arrival (TDOA) features

[5]–[8]. In this, the estimation of TDOA is sensitive to room

reverberation and other acoustic interferences. To overcome

this a formulation based on a pre-trained spatial dictionary and

Watson mixture modeling of directional features is proposed

in [9]. However, all these methods require synchronous signal

data from distributed microphones. Instead for the ad-hoc

microphone network considered in this paper, microphones

across the different nodes are asynchronous, the geometry

of the placement of nodes is random/unknown, and hence

network-wide computation of TDOA or beam-forming is not

feasible. Instead, we compute the directional features inde-

pendently at each device, and then combine them using a

stochastic formulation.

Spatial response function computed using steered response

power with the phase transform (SRP-PHAT) filtering [10]

is used as the spatialization measure. Assuming known mi-

crophone geometry at each ad-hoc node, the SRP response

function is computed for a set of directions and these measures

are normalized to result in a stochastic representation. We

use the stochastic representation as the spatial feature and

features of several ad-hoc devices are combined using a latent

variable mixture model. We use a Dirichlet mixture model [11]

after the signals from different devices are aligned coarsely

using a specific acoustic event such as a clap or a tap, or

network time. Expectation-maximization [12] approach is used

for maximum likelihood estimation of the latent variables and

the segmentation/diarization information is derived from the

posterior mixture component probabilities. Experiments on

real life meeting speech recorded using commercial off-the-

shelf randomly placed mobile phones has shown diarization

error rate (DER) of less than 14%.

II. PROBLEM FORMULATION

Consider a general audio recording scenario with S number

of sources and P number of microphone array nodes. Let Mp-

be the number of microphones at the pth node, and let xm,p[t]
denote the audio signal recorded at the mth microphone

of the pth node. Given the recordings at all the devices

{xm,p[t], ∀m ∈ [1 Mp]; ∀p ∈ [1 P ]}, the goal of this paper

is to perform segmentation/diarization of the recorded signal,

i.e., to identify “who spoke when?” in the long conversation

recording. We assume the sources to be fixed (non moving)

and a single source at a given spatial region, which is true in

most of the meeting recording scenarios. In such a scenario,

the spatial information alone can provide the source (speaker)

activity along the recording time-line.

The audio signal is recorded at each node using the local

clock without any other external synchronization. However, for

further processing, the estimated features from different nodes

can be synchronized coarsely. The synchronous recording

at a particular node provides for beam steering to compute

the source direction information. We consider computation
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of source spatial information statistics in a frame by frame

manner, independently at each mobile node, using SRP-PHAT

method. We then formulate a joint modeling of the directional

statistics obtained at each of the nodes using a latent variable

mixture model. Since the sensor nodes are placed arbitrarily

and the information about their own position and orientation

are unknown, we cannot combine the individual spatial fea-

tures through a geometric formulation. Hence, we resort to

stochastic modeling to derive the segmentation information.

We note that in the proposed approach, the goal is not the exact

position of the source, but to use the directional information to

recognize the presence of source activity along the recording

time-line. We show that this is possible using a stochastic

formulation of directional data derived from several ad-hoc

microphone arrays.

III. STATISTICAL DETECTION

A. Spatial features

We consider steered response power (SRP) approach to

compute the spatial features at each time-frame n for each

of the nodes separately. We omit the index of the node

p in the following discussion for brevity. Let x[n, k] =
[x1[n, k] . . . xM [n, k]]T denote the multi-channel signal in the

short time Fourier transform (STFT) domain for the micro-

phone array of a single node, where n, k denote the discrete

time and frequency indices respectively. Let a[θ, k] denote

the steering vector corresponding to a source at a spatial

direction θ for the frequency bin k with respect to a local

coordinate system centered at the array. Assuming free field

sound propagation and a compact array, we have

a[θ, k] =

[

1 e

(

−
j2πkτ21(θ)

K

)

. . . e

(

−
j2πkτM1(θ)

K

)
]T

, (1)

where K is the size of the discrete Fourier transform used

for the STFT computation, and {τ21(θ), . . . , τM1(θ)} denote

the TDOA values at the M − 1 microphones with respect to

the first (reference) microphone. In the SRP method [10], the

spatial response function is computed as,

y[n, θ] =

K
∑

k=1

∣

∣a[θ, k]Hxf [n, k]
∣

∣

2
, (2)

where xf [n, k] =
x[n,k]
|x[n,k]| is the signal phase vector obtained

after PHAT filtering.

We evaluate the response function y[n, θ] at L discrete

angular positions Θ = {θ1, . . . , θL} with respect to the array.

Since the source can be assumed to be relatively stationary

compared to STFT/SRP computation, we smooth the discrete

SRP function across time using recursive averaging,

ỹ[n, θl] = αỹ[n, θl] + (1 − α)y[n− 1, θl], l ∈ [1, L]. (3)

This is to minimize the time variation of SRP function due to

the diffuse reverberation component. Smoothed SRP function

is then normalized to represent the estimated source direction

statistic which is used as a feature for the mixture density

modeling.

Let y[n,Θ] , 1
C
[ỹ[n, θ1] . . . ỹ[n, θL]]

T
, where C =

L
∑

l=1

ỹ[n, θl] is the normalization constant. Thus the vector

y[n,Θ] is a positive function and sums up to unity over θ,

to be viewed as a probability measure.

In the present formulation, we compute the spatial features

independently at each node, and obtain P number of features

{yp[n,Θp]}, one vector per node, at each time frame n. Due

to reverberation in the enclosure and other recording noise,

yp[n,Θp], ∀ n, p does have estimation errors and hence a fur-

ther statistical formulation is required to effectively combine

the information from several nodes.

B. Latent variable source modeling

We model the spatial features computed at

each of the microphone arrays of the P nodes

{yp[n,Θp], 1 ≤ p ≤ P, 0 ≤ n ≤ N − 1} jointly using

a stochastic mixture model. The generative model of the

observations can be stated as follows: the latent variable

selection vector zn (S dimensional binary vector) selects

a source (an audio source or a speaker) from a set of S

sources based on a Bernoulli distribution with parameter

π = [π1, . . . , πS ]
T

, P(zn;π) =
S
∏

s=1
πzns
s , and the signal from

the selected source results in the spatial feature observations

{yp[n,Θp]} at all the P nodes. Spatial feature (SRP function)

computation at a node depends on the placement/orientation

of the microphones at the node and the relative distance of

the node with respect to the source, and it is independent

of the other nodes. Hence, {yp[n,Θp]} computed at the P

nodes can be combined together as a joint probability of,

P({yp[n,Θp]}|zns = 1,∆) =

P
∏

p=1

P(yp[n,Θp]|δsp), (4)

where ∆ = {δsp, ∀s, p} is the set of parameters of the mixture

component densities of the S sources, at each of the P nodes.

Since the spatial feature yp[n] represents a probability mass

function (PMF). We propose to model them using a Dirichlet

distribution [11] to suit the discrete nature of the sources.

P
(

yp[n,Θp]
∣

∣δsp

)

= D(yp[n,Θp]; δsp), (5)

=

Γ

(

L
∑

l=1

δsp[l]

)

L
∏

l=1

Γ (δsp[l])

L
∏

l=1

(yp[n, θpl])
δsp[l]−1

,

where Γ(.) denotes the Gamma function. It may be noted that

δsp parameters provide for the discrete form of the PMF at

each node, although θl are different at different nodes. Also,

assuming the directional data to be independent across time,

we get the overall model as:

P(Y|Z,∆) =
N−1
∏

n=0

S
∏

s=1

[

P
∏

p=1

D(yp[n,Θp]; δsp)

]zns

. (6)
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The independence assumption across time may not be always

true, since, (i) the spatial features are computed after smooth-

ing (eqn. (3)), and (ii) the sources do not change their position

arbitrarily. However, this dependence is not considered in the

present formulation, but can be introduced with a first order

Markov dependence of the latent variables.

The formulation is equivalent to mixture modeling of the

spatial features separately at each node, with the latent se-

lection variable zn shared (common) across all the nodes.

Accordingly, we show in the next section that the parameter

estimation of the component densities is independent for

each node, while the computation of posterior over the latent

variable requires central aggregation of frame likelihoods.

C. Parameter estimation

The parameters ∆ and π are estimated by maximiz-

ing the total likelihood function using the expectation-

maximization (EM) algorithm. At iteration-i, the EM algo-

rithm involves computation of (i) the posterior distribution

P

(

Z|Y,∆(i),π(i)
)

, and (ii) maximization of the expected

joint likelihood Q(∆,π) = E{logP(Y,Z|∆,π)}.

It can be shown that, P
(

Z|Y,∆(i),π(i)
)

is an independent

Bernoulli distribution with parameter,

P

(

zns = 1|{yp[n,Θp]},∆
(i),π(i)

)

=

π
(i)
s

P
∏

p=1
D(yp[n,Θp]; δ

(i)
sp )

S
∑

s=1
π
(i)
s

P
∏

p=1
D(yp[n,Θp]; δ

(i)
sp )

(7)

and E{zns} , γ
(i+1)
ns = P(zns = 1

∣

∣{yp[n,Θp]},∆
(i),π(i)).

In the maximization step, the function Q(∆,π) is maxi-

mized:

Q(∆,π) = E{logP(Y|Z,∆) + E{logP(Z|π)} (8)

Substituting for the component densities and simplifying, we

get,

Q(∆,π) =

N−1
∑

n=0

S
∑

s=1

γ(i+1)
ns log πs+

N−1
∑

n=0

S
∑

s=1

γ(i+1)
ns

P
∑

p=1

logD(yp[n,Θp]; δsp). (9)

Maximization of eqn. (9) with respect to πs subject to the

constraint
S
∑

s=1
πs = 1 results in the estimate,

π(i+1)
s =

Ns

N
, where Ns =

N−1
∑

n=0

γ(i+1)
ns . (10)

Maximization of (9) with respect to δsp requires solving the

problem:

δ
(i+1)
sp = argmax

δsp

N−1
∑

n=0

γ(i+1)
ns logD(yp[n,Θp]; δsp). (11)

Compute D(s1[n]; δs1)

Compute D(s2[n]; δs2)

Compute D(sP [n]; δsP )

Update δs1

Update δs2

Update δsP

...
...

Compute

{γns}, π

γ(i)
ns

γ(0)
ns

γ̂ns

Fig. 1. Block diagram of the EM estimation algorithm

Substituting for D(sp[n]; δsp) using (5), we get the optimiza-

tion problem as,

δ
(i+1)
sp = argmax

δsp

N−1
∑

n=0

γ(i+1)
ns

[

log Γ

(

L
∑

l=1

δsp[l]

)

−

L
∑

l=1

log Γ(δsp[l]) +

L
∑

l=1

(δsp[l]− 1) logyp[n, θpl]

]

. (12)

Gradient-descent algorithm is used to solve for {δsp} [13].

The parameters δsp, ∀s, p are estimated independently for

each node p which allows for distributed computation, but the

estimation of {γns} and π require the likelihood computed at

all the nodes (eqn. (7)). A block-diagram description of the

algorithm is shown in Fig. 1. In each iteration, the parameters

δsp are updated using (12) independently at each node us-

ing the posterior estimates γns from the previous iteration.

The updated δsp are then used to compute the likelihood

D(yp[n,Θp]; δsp) at each node, which is then shared to a

common computing node, which updates the posterior γns.

D. Segmentation/Diarization

At the convergence of the EM algorithm, the posterior

parameter, γ∗
ns denotes the probability of sth source being

active at nth time frame. The segmentation information is

obtained as the source label s at each time frame n using

the max-rule over s,

ŝ[n] = argmax
s

γ∗
ns. (13)

IV. EXPERIMENTS AND RESULTS

sp
eak

er
#

1

speaker#2

sp
eak

er
#

31

2

3

Fig. 2. Meeting recording scenario

Real-life meeting recordings are used for the evaluation

of the proposed scheme. Three mobile phones (from three

different manufacturers, running android OS) are placed in

an arbitrary orientation on a table of dimensions 1.23 m ×
0.77 m × 0.77m in a reverberant enclosure (RT60 ≈ 650
ms). Each mobile is configured to record stereo signals at

Fs = 48 KHz. The recorded signals are down-sampled to
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16 KHz to confine the STFT range to 8 KHz. The sound

from a tap on the table is used as the acoustic event to align the

STFTs across the mobile devices. We consider five recordings

with three participants (seated on three sides of the table as

shown in Fig. 2) in each recording. The three speakers are

chosen among three male speakers and one female speaker.

The duration of the recordings varied from 5 − 10 minutes,

and the recordings are annotated manually for the speaker-ID.

The mobile phones and participants are placed freely for all

the five recordings, without any specific orientation.

STFT analysis is carried out using a frame size of 64 ms

with 50% overlap between successive frames. In the SRP-

PHAT computation, the beam steering is performed with a

resolution of 4o (L = 46). The steering vector of SRP-PHAT

requires knowledge of the spacing between the microphones.

For the commercial mobile devices used here, we do not

know the exact mic spacing, hence we choose a maximum

spacing of 0.16 m. This will affect only the local angle θl
and does not alter the probability measures. The parameter

α used for obtaining smooth spatial features is chosen to be

0.9. EM algorithm for DMM estimation is initialized using

the method suggested in [13], and the maximum number

of iterations is limited to 100. The number of sources S

is assumed to be known in this experiment. However, it is

possible to estimate it by using the histogram of the peak

locations of the spatial feature. The performance is measured

using the diarization error rate (DER), and computed using

the NIST speech recognition scoring toolkit [14], with a collar

interval of 0.25 s. The proposed algorithm assigns each frame

to a single source, and an estimate of the oracle performance

is obtained using ground truth labels where we assigned the

label of previous frame to frames with speaker overlap.

Fig. 3 illustrates the spatial features computed at the three

mobile devices and the spectrogram of the speech recorded at

one of the devices for one of the recordings (illustrations for

all the recordings are available online1). The spatial features of

the sources differ at the three devices, and the discriminability

between source positions is also different for the three mobiles.

We can see that m2 and m3 show clearer directional features

than m1. This is likely due to the differences in the placement

and sensitivity of the microphones on the mobile devices.

However, there is one-one correspondence between the feature

patterns across the devices. For example, in the first mobile

recording, the spatial features contain a clear peak only for one

of the sources (green), and the energy is less directional for

the other two sources. This may be due to the directionality

and placement of the microphones in the mobile device. The

joint modeling at all the devices does help in estimating the

correct source regions. Source posterior {γns∀n} is shown

in Fig. 3(e). We see that estimated speaker activity closely

matches the ground truth shown in Fig. 3(f). We note that,

silence regions and also segments with overlapped speakers are

assigned to the previous segmented speaker. This is because

of the smoothing step in feature computation.

1http://www.ece.iisc.ernet.in/∼sraj/mDiar.html
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Fig. 3. (a) Spectrogram of a microphone signal. (b,c,d) computed spatial
features {sp[n]} for the three mobile devices (m1−m3), (e) estimated source
activity, and (f) ground truth source activity (s1 = red, s2 = blue, s3 =
green) shown in respective color.

TABLE I
DER PERFORMANCE (%) FOR FIVE RECORDINGS R1− R5

ID R1 R2 R3 R4 R5 Avg.

Proposed 13.1 12.5 20.9 14.0 6.5 13.4

Oracle 11.3 10.8 20.5 13.7 5.6 12.4

Overall performance of the new scheme for all the five

recorded conversations is shown in Tab. I. The performance

varies across the different recordings, due to the different

sources and the different microphone placements; also there

will be different amounts of overlap between the sources

during the conversation. The DER is found to be high for

some conversations that have higher overlap. However, for all

the recordings, the performance of the proposed algorithm is

with in 2% from the oracle performance.

V. CONCLUSIONS

Dirichlet mixture modeling of spatial features computed per

node and a shared latent space is found to be good for identi-

fying “who spoke when?” in audio recordings from a network

of ad-hoc mobile microphone arrays. This is true despite the

unknown variabilities such as the nature of microphones, their

orientation within different nodes, unknown/random placement

of the nodes and asynchronous recording. Presently a single

source is assigned for each time-frame, but the method can be

extended to predict multiple source activity, which can further

improve the diarization performance.
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