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Abstract—This paper describes a group theoretic method
for the detection of accelerating targets in both active and
passive radar applications. The method directly produces a two
dimensional range-Doppler rate map by utilizing multiple time
and frequency shifts of the slow time data to structure the
problem as one of detection of a multi-channel unknown rank-
one component in noise. Our technique provides considerable
computation saving when compared to the optimal method of
computing and searching the three dimensional range-Doppler-
Doppler rate map.

Index Terms—Accelerating radar targets, range-acceleration
processing, range-Doppler migration, accelerating target detec-
tion.

I. INTRODUCTION

The detection and parameter estimation for accelerating
radar targets has a long history. Kelly [1] analysed the problem
of detection and parameter estimation of the range, Doppler
and Doppler rate of an accelerating radar target, for a general
waveform. The paper describes the GLR detector and maxi-
mum likelihood estimation and computes the range-Dopple-
Doppler rate ambiguity function and what is essentially the
Fisher information/Cramer-Rao Bound. As noted by Kelly, the
special case of pulsed radar signals had been tackled a little
earlier in [2], [3].

In the case of a pulse train in the delay-Doppler narrow band
approximation, and where one can neglect range migration
during a coherent processing interval, the problem becomes
one of detecting a linear frequency modulated signal in the
time series consisting of the slow time samples for each
specific range. Computing the GLR statistic for an array of
Doppler-Doppler rate pair constructs the so-called chirpogram
or chirp transform [4], [5]. The range-Doppler-Doppler rate
map, displays the GLR statistic, is a three dimensional function
consisting of a two dimensional chirpogram for each range
tested. This is a significant computational challenge, although
work has been done on making this computation more efficient
[6], [7], [8].

It should be noted that there are a large number of methods
for the detection of accelerating target based estimation from
and subsequent corrections to the range-Doppler map [9], [10],
[11], [12]. Here we take a quite different approach.

Suppose that one is interested in detecting those targets in
the radar scene which have significant acceleration. That is,
to directly construct a range-Doppler rate map, in a direct
and computationally efficient way, without the need to search
through Doppler values. The purpose of this paper is to
describe a method for achieving this. Before, describing our
approach, we note that given a detection of an accelerating

target at a given range one can de-chirp the slow time series
for that range to get an accurate estimate of the targets Doppler.

As noted above, for a given hypothesised range the detection
problem becomes one of LFM signal in noise and the statistical
optimal detector of a chirp signal in Gaussian white noise
is the chirpogram, which involves a two-dimensional search
over the entire plane of frequencies and chirp rates. A well-
known computationally efficient but statistically suboptimal
method for detection/estimation of LFM signals is to use
the discrete ambiguity function proposed by Peleg and Porat,
[13], [14]. This technique has been applied to radar in [15].
The major drawback of this approach are the dominating
cross terms which preclude it use at low SNR which is
a major drawback in the radar context. Recently we [16]
have proposed a technique for the detection of weak LFM
signals which involves only a linear search over the range
of chirp rates rather than two-dimensional search over the
entire plane of frequencies and chirp rates involved in the
use of the chirpogram. The technique is based on the fact
that an LFM signal of any particular chirp rate is the mutual
eigenvector of a set of commuting time and frequency shift
operators. This method works at very low SNR and can handle
multiple signals and interferers. Here this method is adapted
to directly and efficiently compute a range-Doppler rate map
for accelerating radar targets.

II. SIGNAL MODEL

Consider a pulse Doppler radar which transmits a coherent
modulated pulse train consisting Np pulses,

s(t) =

Np−1∑
n=0

p(t− nT )eiωct

where p(t) denotes the pulse waveform, T is the pulse repe-
tition interval (PRI) and ωc is the angular carrier frequency.
For a point target with constant radial acceleration a, initial
range r0, and initial radial velocity v0 the returned baseband
signal is

x(t) = α0

Np−1∑
n=0

p(t− nT − 2r(t)/c)e−iωc2r(t)/c (1)

where the distance from the radar to the target, r(t) is given
by

r(t) = r0 + v0t+
a

2
t2.
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It is assumed that target motion is such that over a coherent
processing interval (CPI),

p(t− 2r(t)/c) ≈ p(t− 2r0/c)

so the returned signal, (1) can be represented as

x(t) = α

Np−1∑
n=0

p(t− nT − 2r0
c

)e−i(ωdt+
1
2βdt

2) + ν(t)

where ωd = 2ωcv0/c is the instantaneous Doppler frequency
and βd = 2ωca/c is the Doppler chirp rate. The complex
number α = α0e

2iωcr0/c represents the amplitude and phase of
the target return and ν(t) is additive Gaussian white noise with
zero mean and variance σ2 per real dimension. With standard
Doppler processing the output of the matched filtered baseband
return, is sampled for each hypothesized initial range, at delays
2r0/c, 2r0/c+T, · · · , 2r0/c+NpT to give the slow time series

yn = αei(ωdn+
1
2β

2
d) + νn, n = 0, 1, . . . , Np − 1. (2)

Thus, for each hypothesised range the problem reduces to
detection of a linear frequency modulated signal in noise. The
usual Doppler processing assumes that a is negligible and the
problem reduces to the detection of a single complex tone in
noise. The corresponding GLR detection statistic

γ(r0, ωd)
2 =

∣∣∣∣∣∣
Np−1∑
n=0

yn(r0)e
−iωTdn

∣∣∣∣∣∣
2

and a plot of this statistic over a suitably chosen discrete set
of values for r0 and ωd is referred to as a range-Doppler plot.
For a fixed value of r0, γ(r0, ωd)2 is the periodogram of the
time series yn(r0), n = 0, · · · , Np. If a target at r0 has an
appreciable radial acceleration then the energy of the signal is
spread over a range of Doppler frequencies. This reduces the
detectability of the target.

When the targets have non-negligible radial accelerations
then it is necessary to work with the model (2). In this case
the GLR detection statistic is

γ(r0, ωd, βd)
2 =

∣∣∣∣∣∣
Np−1∑
j=0

yn(r0)e
−i(ωdTn+ 1

2βdT
2n2)

∣∣∣∣∣∣
2

.

Now a fixed value of r0, γ(r0, ωd, βd)2 is the so-called
chirpogram of the slow time series yn(r0) and overall the
range-Doppler is replaced by the range-Doppler-Doppler chirp
rate plot. This is a three dimensional function. and takes
significantly more computation than the corresponding range-
Doppler plot, even if one puts significant effort into efficient
computation [7]

III. RANGE-ACCELERATION PROCESSING

Recently Sirianunpiboon et al. [16] have proposed a tech-
nique for the detection of weak LFM signals which involves
only a linear search over the range of chirp rates rather than
a two-dimensional search over the entire plane of frequencies
and chirp rate involved in the use of the chirpogram. The

technique is based on the fact that an LFM signal of any
particular chirp rate is the mutual eigenvector of a set of
commuting time and frequency shift operators. This method
works at very low SNR and can handle multiple signals and
interferers.

This section proposes the application of this technique to
enable range-acceleration processing, i.e., for each range bin,
the technique is applied to (2) to detect the presence of
accelerating targets at that range, bypassing the need to search
in target velocity. The details of the technique is given in
[16], however for completeness, we first briefly describe the
technique in order to provide a background for this application.

A. A Group Invariance Approach to LFM Signal Detection

Consider an LFM signal in noise,

y(t) = αsω,β(t) + ν(t) (3)

where sω,β(t) = ei(ωt+
β
2 t

2) represents an LFM signal at time
t. The signal model here is to be compared with (2). Consider
the time-shift operator T (τ) and the demodulation operator
D(ω) which are respectively defined by

(T (τ)ψ)(t) = ψ(t+ τ)

(D(ω)ψ)(t) = ψ(t)e−iωt.

The set of operators

Aβ = {D(βτ)T (τ)|τ ∈ R}

is a subgroup of the Heisenberg-Weyl group, for which all of
the operators commute. This implies that the entire subgroup
of operators have common eigenvectors. The action of this
subgroup on the LFM signal sω,β(t) is given by

D(βτ)T (τ)sω,β(t) = ei(ωτ+
β
2 τ

2)sω,β(t).

Thus sω,τ (t) is an eigenvector of the operator D(βτ)T (τ)
with the eigenvalue ei(ωτ+

β
2 τ

2). Choose a set

{D(βτj)T (τj)|j = 1, . . . ,M} (4)

of M operators in Aβ . The eigenvector property implies that
the set of operators (4) preserves the signal sω,β merely
multiplying it by a constant phase. Note that this property
will only be true for LFM signals with chirp rate β. Applying
the set of operators (4) to a noisy LFM signal as given in (3),
we obtain

D(βτj)T (τj)y(t) = αei(ωτj+
β
2 τ

2
j )sω,β(t) + νj(t).

In discrete time this becomes

yj = Ajs+ νj , 0 ≤ j ≤M − 1

where yj = y(n + τj)e
−iβτjn, 0 ≤ n ≤ N − 1, Aj =

αei(ωτj+
β
2 τ

2
j ), νj = ν(n + τj)e

−iβτjn is the new noise term
and s ∈ CN is a vector of sampled chirp signal sω,β(t).
Collecting our newly created channels together we have,

Y = As+ ν
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where Y ∈ CM×N is the data matrix with each row being yj
and A ∈ CM denotes a vector of unknown complex amplitude
with element Aj . The problem now can be formulated as a
binary hypothesis test, i.e., for each range bin the detection
problem is to test between the following:

H0 : Y = ν

H1 : Y = As+ ν.

The generalised likelihood ratio test (GLRT) for this problem
is

λmax
H1

≷
H0

γ

where λmax is the normalised largest eigenvalue of Y Y †.

B. Application to Range-Acceleration Detection

This section summarises a proposed range-acceleration pro-
cessing for detection of accelerating targets. Consider the
matched filter output as given in (2), for each range bin,
denoting y = {yn}

Np−1
n=0 .

1) Let τj , j = 1, . . . ,M be a set of chosen time delay,
shifting y by τj and demodulating with a Doppler(chirp)
rate, β to form a data matrix Y of size M ×Np, where
each row is

yj = y(n+ τj)e
−iβτjn, 0 ≤ n ≤ N − 1

where the vector samples yi are clipped so that the
vectors are all the same length N for all j.

2) Compute the GLRT statistics, i.e., the normalised largest
eigenvalue (λmax) of Y Y †.

For each range bin, we now obtain GLRT detection statistics
as a function of Doppler rate β for data yn, n = 0, . . . , Np −
1, that is the range-Doppler rate, or range-radial acceleration
map.

C. Computational Aspects

For each hypothesised range one first computes the se-
quences

zj`(n) = y(n+ τj)y(n+ τ`)

for each j ≥ ` = 1, . . . ,M . Choose the equispaced Doppler
rates k/B to be considered. The j, ` element of the matrix
Y Y † can be computed for all these Doppler rates as

[Y Y †]j` =
M∑
j=1

zj`(n)e
−i(τj−τ`)kn/B .

For appropriate B this can be computed efficiently for all
Doppler rates at the same time using the chirp-Z transform.

IV. SIMULATION

This section provides simulation results to demonstrates the
performance of the proposed range-acceleration detector. The
radar parameters used in the simulations are as follows, the
carrier frequency, fc = 9.4 GHz and the bandwidth is 20 MHz.
A CPI consist of N = 512 pulses at a PRI of 200 µs and
pulse width is 5 µs. A set of delays used in the simulation is

(a) Range-Radial Velocity Map

(b) Range-Radial Acceleration Map

Fig. 1: A moving target is at initial range of 1200 m, moving
with radial velocity 25 m/s and accelerating at 18 m/s2.

{0, 12, 24, 48, 72, 96, 144} and the SNR of the received signal
is assumed to be −18 dB. First consider an example with one
moving target with initial range at 1200 m, initial velocity at
25 m/s and accelerating at 18 m/s2. The range-radial velocity
and range-radial acceleration maps are shown in Figure 1a and
Figure 1b. The range-radial acceleration map clearly shows an
accelerating target without range and acceleration migration
while the conventional range-Doppler processing results in
range and Doppler migration.

The second example consider a scenario where one target is
located at 1115 m away, and is moving with constant velocity
12m/sec and another target is at the range of 1200 m, moving
with velocity 25 m/s and accelerating at 10 m/s2. Figure 2a
and Figure 2b show the range-radial velocity (Doppler) map
and range-radial acceleration map respectively.

The third example consider a scenario when both targets
are accelerating. Both targets are located at the same ranges
and moving with velocities as in the first example’s scenario
except the target at 1115 m is accelerating at 13 m/s2. The
range-radial velocity map and range-radial acceleration map
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(a) Range-Radial Velocity Map

(b) Range-Radial Acceleration Map

Fig. 2: A non-accelerating target with radial velocity 12 m/s
and an accelerating target at 10 m/s2 with radial velocity
25 m/s.

are shown in Figure 3a and Figure 3b.

V. DISCUSSION AND CONCLUSIONS

In this paper a group theoretic technique was developed
which allows the direct computation of a range-Doppler rate
map that can be used to detect accelerating radar targets much
more efficiently than with the optimal range-Doppler-Doppler
rate map. A complete analysis of detection performance of the
detector will be given in future full exposition. However, a very
good indication of its performance can be obtained from by
considering the results presented in [16], and upon recalling
that for a given range bin the radar detection problem is that
of an LFM signal.
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