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Abstract—Brain functioning is severely affected in long-term
alcoholics. This degradation is reflected in Electroencephalo-
graphic signals(EEG) which are electrical signals in the brain
generated due to the firing of neurons. These signals can be
used to understand the changes in the brain of an alcoholic. In
this work, Riemann geometry based classification framework is
used to study changes in interdependencies across various brain
regions in alcoholics. Publicly available data of 50 subjects(25
alcoholics, 25 control) with 10 trials each are used in this work.
Spatial covariance matrices for empirically chosen channels are
input to two classification scenarios. In the first scenario, co-
variance matrices are used as features to ”Minimum Distance to
Mean classifier with geodesic filtering(fgMDM)” on the manifold.
The highest mean accuracy obtained is 82.8% for the channel
set of AF2 & P6. In the second scenario, the covariance matrices
are mapped to tangent space and the resultant tangent vectors
are used as features for Support Vector Machine with Radial
Basis Function kernel. In this scenario, the highest mean accuracy
obtained is 87.6% for the channel set FP1 & PO1. Both scenarios
indicate significant changes across frontal lobe in comparison
to the posterior lobes of the brain, in alcoholics. Changes in
covariance matrices for the EEG, when the same stimulus is
provided, indicate changes in brain functioning, consistent with
alcoholism. Hence, Riemann geometry is a promising framework
to study changes in brain region inter-dependencies, for subjects
exposed to different brain-altering situations.

Index Terms—Electroencephalographic Signals, Alcoholic, Rie-
mann Geometry, Tangent Space

I. INTRODUCTION

Electroencephalographic signals (EEG) are utilized in anal-
ysis of brain function. These signals carry characteristics
corresponding to the state of the brain. EEG has been used
in diagnosing neurological disorders like epilepsy [1] and
Parkinson’s disease [2] as well as analyzing mental health
issues like depression [3]. For brain Machine Interface, EEG
provides a non-invasive means of analyzing Brain function [4].
In addition to these, understanding the emotions of a person
[5], analyzing the effects of meditation [6] and detecting the
different sleep stages [7] in a person can be carried out using
EEG.
EEG signals can be divided into various frequency compo-
nents, here called as brain waves [8]. Frequencies in the range
(0-60Hz) are most informative in all analysis. This range is
further divided into five bands mainly: Delta(0-4Hz), Theta(4-
8Hz), Alpha(8-14Hz), Beta(14-30Hz) and Gamma(30-60Hz).
Deep sleep mainly consists of delta waves. Theta waves are
usually found during drowsiness and are also associated with

intuition. When a person is relaxed with eyes open, mainly
alpha waves are generated in the brain. Beta waves become
predominant when a person is performing a focused mental
activity. Perception and REM (Rapid Eye Movement) sleep
involve Gamma waves.
Long-term alcohol abuse has a negative impact on health.
Apart from liver damage, brain gets affected with alcohol
abuse [9]. Negative effects of alcohol on brain include memory
lapse, disruption in growth of new cells and blackouts. Many
alcoholics have thiamine deficiency which could lead to seri-
ous neurological disorders like WernickeKorsakoff syndrome
[10]. In addition, structural changes like actual shrinkage of
brain and loss of neuronal connection [11] can occur in the
brain.
Studies have shown that EEG of alcoholics have higher power
in some of the brain waves (mainly Theta [12] and Beta
[13]). Along with the power of EEG waves, coherence is also
used to distinguish alcoholics and control [14]. Support Vector
Machine was used with features such as approximate entropy,
sample entropy, Largest Lyapunov Exponent and Higher Order
Spectra to result in an accuracy of 91.7% [15]. In the work
by [16], Horizontal visibility graph entropy (HVGE) feature
reported an accuracy of 87.5% using three HVGE features and
95.8% using 13-dimension HVGE. Hybrid features involving
raw signal with derived features were explored in [17] result-
ing in an accuracy of 88%.
Many studies in literature are limited to analyzing EEG signals
with respect to frequency compositions (statistical features)
and non-linear dynamical frameworks (chaos feature) [12]–
[15], [17]. The spatial inter-dependencies of different brain
regions are not taken into account in these studies. However,
covariance matrices of the channels of the EEG capture
information on the spatial inter-dependencies of the brain
regions. In this work, Riemann Geometry (RG) is utilized for
classification of covariance matrices of different channels of
alcoholics and control. To the best of the authors’ knowledge,
Riemann Geometry has not been used before for analysis of
alcoholic EEG. Here two scenarios of classification framework
are carried out, one being the classification of covariance
matrices of the EEG in Riemannian manifold and the other
being the classification of tangent vectors, corresponding to
the covariance matrices in the manifold, in the tangent space.
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Fig. 1. Sample plot of control and alcoholic EEG data

II. DATA DESCRIPTION

UCI Machine Learning repository [18] was utilized for
obtaining the data for this work. The database consists of 10
trials of 1 second EEG of alcoholics and control who were
shown a single stimulus S1 (1980 Snodgrass and Vanderwart
picture set - picture of objects). EEG was sampled at 256
Hz. The data consisted of 64 electrodes of which two were
EOG electrodes and one reference. For this work EOG and
reference electrodes were not considered. Here, 50 subjects
(25 alcoholics and 25 control) with each subject containing
10 trials were used. Total of 500 time series are considered in
this work. Fig.1 shows a sample plot of alcoholic and control
data.

III. PROPOSED METHODOLOGY

The block diagram of the proposed methodology is shown
in Fig.2. The EEG signals are used to calculate the covariance
matrices of channel combination that are empirically chosen.
In scenario 1, these covariance matrices are given as features to
an extended version of “Minimum Distance to Mean” classifier
for classification. Here, the classification is carried out in the
Riemannian manifold. In scenario 2, these covariance matrices
are mapped on to tangent space of a reference covariance
matrix, which is the mean covariance matrix of the training
data. After mapping, the tangent vectors are used as features
to support vector machine with radial basis function kernel for
classification. A 7-fold cross validation is carried out.

A. Riemann Manifold

A topological space, which resembles Euclidean space lo-
cally is known as manifold [19]. A continuous map exists from
the open subset of the manifold to the open subset of Euclidean
space. If this map is differentiable, the manifold has the
structure of a differential manifold. Differential manifolds are
those manifolds where notions used in multi-variable calculus
can be defined [20]. Smooth manifolds are those where the
transition maps are smooth [19]. At every point on the smooth
manifold, there exists a linear space that defines the velocity
of the curves passing through it. Riemann Manifold [20], M ,
can now be defined as a smooth manifold equipped with inner

products on the linear space at each point. Riemannian metric
is the collection of all inner products defined on the vector
space associated with each point on the manifold. Earth is an
example of Riemann Manifold. The distance between any two
points on the Earth is a curve on the manifold. The shortest
smooth curve between two points on the manifold is known
as geodesics [20].
The vector space associated with each point on the smooth
manifold is known as Tangent Space [20]. There exists map-
ping of points from Riemann Manifold to its tangent Space
and vice versa. For a reference point p on the Riemannian
Manifold M , there exists Tangent Space TpM , and let v be
the tangent vector in the Tangent Space. The exponential map
Expp : TpM → M , maps the tangent vector v from Tangent
space to the manifold. The mapping from a point on the
manifold to the tangent vector v is known as logarithmic map,
Logp :M → TpM .
For a symmetric matrix, if its eigenvalues are all positive, then
that matrix is known as a positive definite matrix. A space
symmetric positive definite (SPD) matrix forms a differential
manifold, specifically Riemannian manifold [21]. Each SPD
matrix m xm can be viewed as a point on the manifold

of dimension
m(m+ 1)

2
. The distance between two SPD

matrices S1 and S2 can be calculated as [21]:

δ(S1, S2) =

√√√√ m∑
i=1

log2λi (1)

where λi are the real eigen values of S−1
1 S2.

The exponential and logarithmic map can be calculated for N
number of SPD matrices, Si, i = 1, 2..., N on the manifold at
the reference point (SPD matrix) Srefas [21]:
Logarithmic map:

Ti = LogSref
(Si) = S

1/2
ref logm(S

−1/2
ref SiS

−1/2
ref )S

1/2
ref (2)

Exponential map:

Si = ExpSref
(Ti) = S

1/2
ref expm(S

−1/2
ref TiS

−1/2
ref )S

1/2
ref (3)
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Fig. 2. Block diagram of the proposed methodology

Fig. 3. Example of Riemann manifold and tangent space at point p of the manifold. S1 and S2 are two points on the manifold that are mapped to tangent
space as tangent vectors V1 and V2 respectively.

where logm(.) and expm(.) denote the logarithm and the
exponential of a matrix. Ti, i = 1, 2, ...N are tangent vectors
on the tangent space of Sref .
In multichannel EEG analysis, covariance matrices provide in-
formation about the variances along each channel and between
channels. Covariance matrix is SPD matrix and hence form a
Riemannian manifold. For each subject, covariance matrix can
be calculated and using these covariance matrices a reference
covariance matrix is calculated. This matrix is the Riemannian
mean (geometric mean) of all covariance matrices. Using this
reference matrix, the covariance matrices can be mapped to
tangent space for using machine learning algorithms such as
support vector machine. If machine learning algorithms such
as minimum distance to mean classifier are to be applied on
the manifold itself, then the distance measure used should be
Riemannian distance.

B. Classifiers

In this work, two classifiers are considered for classifying
the covariance matrices, namely, Minimum Distance to Mean
classifier with geodesic filtering that operates on the manifold
and support vector machine that operates on the tangent space.

1) Minimum Distance to Mean classifier with geodesic
filtering on the manifold: Minimum Distance to Mean (MDM)

classifier calculates the distances of the test covariance matri-
ces to the Riemannian mean of each class and the class label
is assigned corresponding to the class to which the test data
has minimum distance. Fisher geodesic discriminant analysis,
which is an extension of Fisher Linear Discriminant Analysis
to the tangent space, is used to obtain a set of filters which
are applied to MDM classifier to obtain Minimum Distance to
Mean classifier with geodesic filtering (fgMDM) [22].

2) Support vector Machine on Tangent Space: Tangent
Spaces are Euclidean spaces and hence Support Vector Ma-
chine (SVM) can be used on tangent vectors without any
modification [23]. SVM works on the principle that if data
cannot be linearly separated in the present dimension, then
data can be separated by projecting onto higher dimension.
For projection onto higher dimensions, kernels are used. In this
work, radial basis function kernel is used for classification.
7-fold cross validation is carried out.

IV. RESULTS & DISCUSSION

In this experiment, Riemannian geometry was used to
classify the spatial covariance matrices of EEG of alcoholic
and control subjects. 50 subjects (25 from alcoholics group and
25 from controls group) were used in this study. Each EEG
recording was for 1 second and contained 61 EEG channels.
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Fig. 4. Boxplot of the three elements of tangent vectors

The signals were sampled at 256 Hz. A 10-fold classification
was carried out to obtain the resultant mean accuracy of the
classification framework.
Empirical channel selection was carried out for the proposed
classification framework. Initially pairs of all channels were
used to determine empirically those channels that showed dis-
tinct characteristics of the two classes,that is, the channel pairs
that showed altered inter-dependencies in the alcoholics. Only
those pairs of channels that resulted in highest classification
accuracies were chosen. Channel pairs of “FP1” & “PO1’,
“AF2” & “P6” and “CP3” & “P1” resulted in the highest
mean accuracies. This shows that these pairs of channels have
distinct covariance matrices of the two classes which can be
exploited to distinguish alcoholic EEG from control. The chan-
nel pair “FP1” and “FC6” performed worst in classification
with least mean accuracy of 60.4% for scenario 1 and 32% for
scenario 2 which indicate that the inter-dependencies between
these two channels do not contain sufficient information to
distinguish alcoholics from controls.
Scenario 1: The covariance matrices of the EEG data (of

TABLE I
CLASSIFICATION ACCURACIES OF TWO SCENARIOS FOR CHANNEL

COMBINATIONS

Channels fgMDM (%) SVM (%)
(Manifold) (Tangent space)

FP1 & PO1 78 87.6
AF2 & P6 82.5 80
CP3 & P1 76.4 80

CP3,P1,AF2,P6,FP1,PO1 60 69.6
FP1 & FC6 60.4 32

selected channels) were calculated and directly given as fea-
tures to Minimum Distance to Mean classifier with geodesic
filtering (fgMDM) for classification. The covariance matrices
are points on the Riemannian manifold and the fgMDM
classifier resulted in the highest mean accuracy of 82.8% for
the channels pair “AF2” & “P6” as seen from the Table.I. It
is also observed that the channel pairs “FP1” & “PO1” and
“CP3” & “P1” resulted in mean accuracies of 78% and 76.4%
respectively. When we use all three pairs together to calculate

the covariance matrix and give them to the classifier, the mean
accuracy decreases. Hence, only pairs of channels resulted in
distinct covariance matrices of the two classes and not the
combination.
Scenario 2: The covariance matrices of the selected channels

TABLE II
CONFUSION MATRIX OF (A)“AF2” & “P6” USING FGMDM IN THE

MANIFOLD FOR 1 FOLD OF CROSS VALIDATION. (B) “FP1” & “PO1”
USING SVM IN TANGENT SPACE FOR 1 FOLD OF CROSS VALIDATION.

ABBREVIATIONS: SUB = SUBJECT; TR = TRIALS; TS= TIME SERIES; ALCO
= ALCOHOLIC; CONTR =CONTROL

Alcoholic Control Alcoholic Control
Alco 4 0 3 0

(4 sub*10 tr (3 sub*10 tr
= 40 ts) = 30 ts)

Contr 1 2 1 4
( 1 sub*10 tr (2 sub*10 tr (1 sub*10 tr (4 sub*10 tr

= 10 ts) = 20 ts ) = 10 ts) = 40 ts)

F-score 0.8889 0.8 0.8571 0.8889

of EEG data were computed and instead of performing clas-
sification in the Riemannian manifold, these matrices were
mapped onto the tangent space of the reference covariance
matrix. The reference covariance matrix was calculated as the
geometric mean of the covariance matrices of the training data.
The same reference matrix was used to map the test data. Once
the covariance matrices were mapped onto the tangent space
using logarithm map, these matrices were now in the form of
tangent vectors in the tangent space. These vectors were then
used as feature vectors to support vector machine with radial
basis function kernel for classification into two classes. The
boxplot of the three elements of tangent vectors are shown
in Fig.4. As observed from Table.I, the channels pair “FP1”
& “PO1” resulted in the mean accuracy of 87.6%, while the
channel pairs “AF2” & “P6” and “CP3” & “P1” both gave
80% mean accuracy.
This work analyzes the interdependency of the selected chan-
nels and how they vary between alcoholics and controls. The
maximum accuracy achieved was 87.6% in the tangent space
which is comparable to the accuracy obtained by [16] using
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Horizontal visibility graph using 3 HVGE features. With 13-
dimension HVGE features, the accuracy was 8% higher at the
cost of higher complexity. [15] and [17] have higher accuracy
than current work by 4%and 0.5% but they use features
that don’t utilize the interdependency information between
channels. Hence, Riemann geometry can be used to utilize
the channel interdependencies for classification of alcoholics
and control.
An important perspective of using covariance matrices as the
feature is that changes in channel interdependency indicate
changes in brain structure or function. This indicates that
alcohol affects the brain functioning and hence results in
changes in covariance matrices of the two classes.
It is observed that the channel pair “FP1” & “PO1” were
responsible for the maximum mean accuracy of 87.6%. “FP1”
electrode captures information from Prefrontal cortex, specif-
ically fronto-polar area 10(FPA10). This region is innervated
by the Anterior Cingulate Cortex (ACC). In the study by
[24], it has been seen that binge alcoholics develop thinning
of ACC while Parieto-Occipital Sulcus (region near “PO1”
electrode placement) is unaffected. This thinning of ACC
affects functioning of FPA10 which in turn is reflected in
the EEG obtained at “FP1”. Thus the channel pair “FP1” &
“PO1” provide significant difference in the characteristics of
alcoholics from control.

V. CONCLUSION

In order to understand differences in spatial inter-
dependencies among brain regions, the utility of Riemann
geometry has been illustrated. Riemann geometry framework
based classification has been described to distinguish between
EEG from “alcoholics” versus “Controls”. EEG channel pairs
were empirically chosen and their respective covariance matri-
ces were computed. Two scenarios of classification framework
were carried out. In the first scenario, the calculated covariance
matrices were given as features to fgMDM classifier for
classification in the manifold. Maximum mean accuracy of
82.8% was obtained with covariance matrices of channel
pair “AF2” & “P6”. In the second scenario, the calculated
covariance matrices were mapped into tangent space using
logarithm mapping and converted to tangent vectors. These
vectors were then used as features for the SVM classifier
with radial basis function kernel. Here, it was observed that
a maximum mean accuracy of 87.6% was obtained for the
channel pair “FP1” & “PO1”. The significant changes in inter-
dependencies across frontal and posterior lobes, evident in the
classification performance, illustrates the promise in Riemann
geometry based framework for studying subjects who have
been exposed to brain altering situation.
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