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Abstract—We present a unifying framework for dealing with
convolutive blind source separation (BSS), which fully models
inter-channel, inter-frequency, and inter-frame correlation of
sources by latent covariance matrices subject to a joint diagonal-
izability constraint. The framework is shown to encompass as its
specific realizations a variety of standard BSS and dereverbera-
tion methods that have been developed independently, including
frequency-domain independent component analysis (FDICA), fast
full-rank spatial covariance analysis (FastFCA), and weighted
prediction error (WPE). This gives a unified view of conventional
methods and a systematic way of deriving new BSS methods. A
BSS experiment on speech mixtures showed improved separation
performance of a proposed method compared to the state-of-the-
art independent low-rank matrix analysis.

Index Terms—Blind source separation, joint diagonalization,
independent component analysis, dereverberation

I. INTRODUCTION

Blind source separation (BSS) is a task of recovering the
original source signals from their observed mixtures without
any knowledge of mixing systems [1]. Frequency-domain in-
dependent component analysis (FDICA [2]) and nonnegative-
matrix factorization (NMF [3], [4]) are fundamental techniques
for separating convolutive mixtures by exploiting the inde-
pendence between sources and low-rank structure of power
spectra, respectively.

In pursuit of improved separation performance over FDICA
and NMF, various methods have been developed by extend-
ing the spatial and spectral models assumed in FDICA and
NMF. Among such methods, the following have been shown
to be promising: (i) Independent vector analysis (IVA [5]–
[7]) and its extension, independent low-rank matrix analysis
(ILRMA [8]), which unifies FDICA and NMF; (ii) full-rank
spatial covariance analysis (FCA [9]–[12]) and multichannel
NMF [13]–[15], which model the inter-channel correlation by
full-rank spatial covariance matrices to handle diffuse noise;
(iii) correlated tensor factorization (CTF [16]–[18]), which
models not only power spectra but also inter-frequency and
inter-frame (temporal) correlation of sources unlike NMF;
(iv) a dereverberation technique based on weighted prediction
error (WPE [19]–[22]). These methods, however, have been
developed independently, and relationship among them has
been unknown.

This paper gives a unified view of the above conventional
methods. To this end, a generalized framework is introduced in
which inter-channel, inter-frequency, and inter-frame correla-
tion of sources can be fully taken into account by covariance
matrices (Section III). It is then revealed that many of the

conventional methods can be obtained from the proposed
framework by imposing a joint diagonalizability constraint
and a problem specific constraint on the covariance matrices
(Section IV). Besides that, a new class of BSS methods is de-
veloped systematically from the framework, which is a major
advantage of the generalization (Section V). The effectiveness
of the proposed method is confirmed experimentally.

II. BLIND SOURCE SEPARATION PROBLEM

Suppose N source signals are observed by M sensors, or
specifically microphones. The observed mixture xf,t ∈ CM in
the short-term Fourier transform (STFT) domain is assumed
to be the summation of N source spatial images zn,f,t ∈ CM

(n = 1, . . . , N ), namely,

xf,t = z1,f,t + · · ·+ zN,f,t ∈ CM , (1)

where f = 1, . . . , F and t = 1, . . . , T denote the frequency
bin and time frame indexes, respectively. BSS dealt with in
this paper is defined as the problem of estimating the latent
source spatial images {zn,f,t}n,f,t given only the observed
mixture {xf,t}f,t. The independence of sources

p({zn,f,t}n,f,t) =
∏N

n=1 p({zn,f,t}f,t) (2)

is commonly exploited in BSS.
In what follows, we use the following notations for the sake

of simplicity:

xf := [x⊤
f,1, . . . ,x

⊤
f,T ]⊤ ∈ CTM , (3)

x := [x⊤
1 , . . . ,x

⊤
F ]⊤ ∈ CFTM , (4)

zn,f := [ z⊤
n,f,1, . . . , z

⊤
n,f,T ]⊤ ∈ CTM , (5)

zn := [ z⊤
n,1, . . . , z

⊤
n,F ]⊤ ∈ CFTM . (6)

We also use [I] := {1, . . . , I} for a natural number I ∈ N.

III. LATENT COVARIANCE ANALYSIS SUBJECT TO A JOINT
DIAGONALIZABILITY CONSTRAINT (LCA-JD)

In this section, we propose a general BSS framework, called
latent covariance analysis subject to a joint diagonalizability
constraint (LCA-JD).

A. Ideal formulation of the BSS problem

Source spatial images have inter-channel correlation encod-
ing their spatial information, which can be used as a clue for
separating their mixture. They also have source-specific inter-
frequency and inter-frame correlation since the STFT cannot
perfectly decorrelate source spectra of non-stationary signals.

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE



With these in mind, we assume throughout this paper that each
latent source spatial image zn follows a multivariate complex
Gaussian distribution with zero mean and a covariance matrix
Rn ∈ SFTM

+ , namely,

zn ∼ CN (0, Rn) , (7)

where SI+ denotes the set of Hermitian positive semidefinite
(PSD) matrices of size I×I . Note that the non-diagonal entries
of Rn fully explain all the correlation of zn for source n.

With the model defined by (1), (2), and (7), the reproductive
property of the Gaussian distribution implies

x ∼ CN
(
0,

∑N
n=1 Rn

)
. (8)

Once the latent parameters {Rn}Nn=1 have been estimated, e.g.,
by maximum likelihood, the separation result z̃n for source n
can be obtained as the minimum mean square error (MMSE)
estimator of zn:

z̃n = Rn

(∑N
n=1 Rn

)−1

x ∈ CFTM . (9)

The above approach is ideal in that all the correlation of
source spatial images are totally taken into account. However,
the dimension of the parameter space (over R) amounts to
N(FTM)2 while that of the observed mixture x ∈ CFTM

is mere 2FTM (over R). This means that the problem of
optimizing the parameters {Rn}Nn=1 is extremely ill-posed and
there is no hope of obtaining meaningful results.

B. Joint diagonalizability constraint on covariance matrices

To reduce the dimension of the parameter space of the
model introduced in Subsection III-A while retaining the
model flexibility to some extent, we assume that N covariance
matrices {Rn}Nn=1 are exactly jointly diagonalizable by a
(restricted) congruence transformation. More precisely, we
assume the following joint diagonalizability (JD) constraint
on the covariance matrices.

Joint diagonalizability (JD) constraint. Let CP ⊆ CI×I be a
subset of all nonsingular matrices, and Cλn ⊆ RI

≥0 (n ∈ [N ])
be a subset of all nonnegative real vectors, where I := FTM .
The set of covariance matrices {Rn}Nn=1 is said to follow the
JD constraint (with respect to CP and Cλn

) if there exist a
nonsingular matrix P ∈ CP and nonnegative vectors1

λn = (λn,i | i ∈ [F ]× [T ]× [M ] ) ∈ Cλn
(n ∈ [N ]) (10)

such that PHRnP = diagλn for all n ∈ [N ].

Note that by the JD constraint the parameters are transformed
from {Rn}Nn=1 to P ∈ CP and λn ∈ Cλn (n ∈ [N ]). Restrict-
ing the feasible regions, CP and Cλn

, of the parameters, we
can reduce the dimension of the parameter space at the cost of
the model flexibility. Then, the question is how to determine
an appropriate CP and Cλn

in the JD constraint.
To answer this question, we will first reveal in Section IV

that a variety of important BSS and dereverberation methods

1The order of the indexes i := (f, t,m) ∈ [F ]× [T ]× [M ] is not essential.
In fact, it can be changed arbitrarily by permuting the columns of P .

developed so far can be obtained from the proposed approach
by choosing CP and Cλn

appropriately. Besides that, we will
explain in Section V that a new promising family of BSS
methods can be easily developed with the aid of the proposed
general model defined by (1), (2), (7), and the JD constraint.

Once the model parameters P and λ := {λn}Nn=1 are es-
timated, the latent covariance matrices {Rn}Nn=1 are obtained
from the JD constraint as Rn = (PH)−1 diagλnP

−1, and the
source spatial images {zn}Nn=1 can be recovered through (9).
From this perspective, we call the proposed general approach
latent covariance analysis subject to a joint diagonalizability
constraint, or for short, LCA-JD.

C. Optimization problem of LCA-JD

This subsection presents an optimization problem of es-
timating the parameters of LCA-JD. An algorithm to solve
it will be developed when feasible regions, CP and Cλn , is
specified in Section V.

As described in Subsection III-A, the parameters, P and λ,
can be estimated by maximum likelihood, which is accom-
plished by solving the following optimization problem:

minimize
P,λ

J := − log p(x)

subject to P ∈ CP , λn ∈ Cλn
(n ∈ [N ]).

Based on the JD constraint, the cost function is computed as

J = − logCN (PHx | 0,
∑

n∈[N ] diagλn)− 2 log |detP |

=
∑
i∈[I]

 |e⊤i PHx|2∑
n∈[N ] λn,i

+ log
∑

n∈[N ]

λn,i

− 2 log |detP | ,

where ei denotes the unit vector with the ith element equal to
one and the others zero. To solve the above problem, we adopt
a block coordinate descent method that alternately updates P
and λ by solving the following two optimization problems.

Optimization problem for P .

minimize
P

JP :=
∑

i∈[I]e
⊤
i P

HGiPei − 2 log |detP |

subject to P ∈ CP , where Gi :=
xxH∑

n∈[N ] λn,i
for i ∈ [I].

Optimization problem for λ.

minimize
λ

Jλ :=
∑
i∈[I]

 |e⊤i PHx|2∑
n∈[N ] λn,i

+ log
∑

n∈[N ]

λn,i


subject to λn ∈ Cλn

(n ∈ [N ]).

IV. UNIFIED VIEW OF PRIOR METHODS

In this section, we reveal that various state-of-the-art decor-
relation based BSS and dereverberation methods can be com-
prehended as specific realizations of the proposed LCA-JD.
In fact, the difference between these methods resides only
in how to design CP and Cλ in the JD constraint. This is
summarized in Table I from the perspective of which axes
(channel/frequency/frame) are decorrelated by an element of
CP and how to model the decorrelated λ by Cλ.
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A. FastFCA (FCA-JD) and FastMNMF (MNMF-JD)
FastFCA [10], [11] and FastMNMF [12], which we call

FCA-JD and MNMF-JD in this paper, are recently proposed
acceleration methods for full-rank spatial covariance analysis
(FCA [9]) and multichannel NMF (MNMF [13]–[15]), respec-
tively. In this subsection, we will briefly explain the models
of FCA-JD and MNMF-JD, and show that these methods can
be comprehended as special cases of LCA-JD.

In FCA(-JD) and MNMF(-JD), it is assumed that spatial
images for source n are independent of each other, namely,

p({zn,f,t}f,t) =
∏

f∈[F ], t∈[T ] p(zn,f,t) (n ∈ [N ]), (11)

and that they follow complex Gaussian distributions:

zn,f,t ∼ CN (0, vn,f,tSn,f ) , (12)

where, for source n, {vn,f,t}f,t ⊆ R≥0 are scalar variances
encoding power spectrum information and {Sn,f}f ⊆ SM+ are
spatial covariance matrices encoding spatial information.

The main idea of FCA-JD and MNMF-JD is that the spatial
covariance matrices are assumed to be exactly jointly diago-
nalizable by a congruence transformation: For each f ∈ [F ],
there exist a nonsingular matrix Pf ∈ CM×M and vectors
gn,f := (gn,f,1, . . . , gn,f,M ) ∈ RM

≥0 (n ∈ [N ]) such that

PH
f Sn,fPf = diag gn,f ∈ SM+ (n ∈ [N ]). (13)

The model of FCA-JD is defined by (1), (2), and (11)–(13).
Let

⊕K
k=1 Ak for matrices {Ak}Kk=1 denote a block diago-

nal matrices with Ak as the kth diagonal block, that is,⊕K
k=1 Ak := diag{A1, . . . , AK}. (14)

The following proposition tells us that FCA-JD is a specific
realization of LCA-JD.

Proposition 1. The model of FCA-JD is the same as that of
LCA-JD with

CP :=
{⊕F

f=1

⊕T
t=1 Pf | Pf ∈ CM×M

}
, (15)

Cλn
:=

{
(gn,f,mvn,f,t)i∈[I] | gn,f,m, vn,f,t ∈ R≥0

}
, (16)

where I = FTM and i ∈ [I] is identified with (f, t,m) ∈
[F ]× [T ]× [M ].

Proof. The JD constraint in LCA-JD is equivalent to(⊕F
f=1

⊕T
t=1 P

H
f

)
zn ∼ CN

(
0, (gn,f,mvn,f,t)(f,t,m)∈[I]

)
,

which is also equivalent to (11)–(13).

The maximum likelihood estimation problem of FCA-JD is
also identical to that of LCA-JD defined in Proposition 1.

The model of MNMF-JD is the same as that of FCA-JD
except that the power spectrum information is further modeled
by NMF in MNMF-JD, which implies the following.

Proposition 2. The model of MNMF-JD is the same as that
of LCA-JD with (15) as CP and

Cλn
:= {(gn,f,m

∑K
k=1 bn,f,kan,k,t)(f,t,m)∈[F ]×[T ]×[M ]

| gn,f,m, bn,f,k, an,k,t ∈ R≥0 (∀n, f, k, t,m)}, (17)

where K ∈ N is the number of bases in NMF.

TABLE I
SUMMARY OF DECORRELATION-BASED METHODS

method channel frequency frame model of λ
FCA-JD [10], [11] ✓ - - (16)

MNMF-JD [12] ✓ - - (17)
FDICA [2] ✓ - - none
ILRMA [8] ✓ - - NMF

CTF-JD [17] - ✓ ✓ NMF
WPE [20]–[22] (✓) - ✓ none/NMF

IPSDTA-JD-F (§V) ✓ ✓ - NMF
IPSDTA-JD-T (§V) ✓ - ✓ NMF

LCA-JD (§III) ✓ ✓ ✓ any

B. FDICA, IVA, and ILRMA

FDICA [2], IVA [5]–[7], and ILRMA [8] are well-
established BSS methods in the determined case where the
number of sources is equal to that of microphones (M = N).
Nobutaka Ito pointed out that FDICA and ILRMA based on
time-varying Gaussian distributions (see, e.g., [8]) are obtained
from FCA-JD and MNMF-JD, respectively, by setting M = N
and substituting gn,f = en (n ∈ [N ], f ∈ [F ]) in (13). This
implies the following proposition.

Proposition 3. The model of ILRMA is identical to that of
LCA-JD with M = N , (15) as CP , and (17) as Cλn

with the
slight modification of replacing gn,f,m by δm,n, where δm,n

is the Kronecker delta that takes 1 if m = n and 0 otherwise.

The same discussion above can also be applied to FDICA and
IVA (the details are omitted here due to space limitations).
From these discussions, LCA-JD can be viewed as a general-
ized framework including FDICA, IVA, and ILRMA that are
based on time-varying Gaussian distributions as special cases.

C. Spectrum model by PSDTF and CTF

Positive semidefinite tensor factorization (PSDTF [18]) and
its extension, correlated tensor factorization (CTF [16]), are
single-channel BSS methods. They have been proposed to
extend NMF [3], [4] by considering the inter-frequency and
inter-frame correlation of source spectra. Independent low-
rank tensor analysis (ILRTA [17]), named CTF-JD in this pa-
per, is a recently proposed acceleration method for CTF as well
as PSDTF, which is based on an exact joint diagonalizability
constraint on covariance matrices. CTF-JD can be interpreted
as a specific realization of LCA-JD with M = 1 and

CP := {PF ⊗ PT | PF ∈ CF×F , PT ∈ CT×T },
Cλn

:= {(bn,fan,t)(f,t)∈[I] | bn,f , an,t ∈ R≥0 (∀n, f, t)},

where I = FT and the index [I] is identified with [F ]× [T ].
If either PF or PT in the constraint CP is fixed to the identity
matrix, then CTF-JD reduces to an accelerated version of the
PSDTF, called PSDTF-JD in this paper.

D. Dereverberation based on WPE

Weighted prediction error (WPE [19]–[22]) is a class of
dereverberation methods aiming at blindly removing late re-
verberation components from reverberated observed mixture
while preserving the direct components. In the multi-input
multi-output (MIMO) scenario, WPE assumes that (i) the
late reverberation components can be estimated by a linear
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prediction with a delay ∆ ∈ N, and (ii) the dereverberated
mixture follows the model of FCA defined by

xf,t −
∑L

ℓ=1 Q
H
f,ℓxf,t−∆−ℓ+1 ∼ CN (0,

∑
n Rn,f,t) , (18)

where {Qf,ℓ | ℓ ∈ [L] } ⊆ CM×M are the linear prediction
filters at frequency bin f and {Rn,f,t}n,f,t ⊆ SM+ are the co-
variance matrices of the dereverberated source spatial images.

To reduce the computational cost of WPE, {Rn,f,t}n,f,t are
often assumed to be structured as (see, e.g., [20]–[22])

WH
f Rn,f,tWf = diag{λn,f,t,1, . . . , λn,f,t,M} ∈ SM+ , (19)

(λn,f,t,m)(f,t,m)∈[F ]×[T ]×[M ] ∈ Cλn (n ∈ [N ]), (20)

where Cλn (n ∈ [N ]) can be chosen arbitrarily. Interestingly,
Proposition 4 below states that WPE defined by (18)–(20),
whose parameters are {Qf,ℓ,Wf , λn,f,t,m}n,f,t,m,ℓ, is a spe-
cific realization of the proposed LCA-JD.

V. THE PROPOSED METHOD: IPSDTA-JD

To improve the separation performance of ILRMA [8], we
propose a new family of BSS methods for determined mixtures
(M = N throughout this section), named independent positive
semidefinite tensor analysis subject to a joint diagonalizability
constraint (IPSDTA-JD), with the help of LCA-JD. It consists
of two BSS methods, named IPSDTA-JD-T and IPSDTA-JD-
F, each of which extends ILRMA by incorporating a MIMO
decorrelation module of inter-frame or inter-frequency correla-
tion of source spectra into the model of ILRMA, respectively
(see Table I). IPSDTA-JD can also be viewed as a multichannel
extension of PSDTF-JD in Subsection IV-C.

The model of IPSDTA-JD-T/F is defined as follows:

IPSDTA-JD-T. Let ∆, L ∈ N and Pf ∈ CTM×TM (f ∈ [F ])
be an upper triangular block Toeplitz matrix consisting of T 2

blocks of size M ×M and whose (α, β)th block is equal to,
Pf,0 (if α− β = 0)

Pf,β−α−∆+1 (if β − α−∆+ 1 ∈ [L])

OM×M (otherwise).
(21)

IPSDTA-JD-T is defined systematically as LCA-JD with

CP :=
{
P =

⊕F
f=1 Pf | Pf satisfies (21)

}
, (22)

Cλn
:=

{(
δm,n

∑K
k=1 bn,f,kan,k,t

)
i∈[I]

| bn,f,k, an,k,t ≥ 0

}
,

where I = FTM and the index i ∈ [I] is identified with
(f, t,m) ∈ [F ]×[T ]×[M ]. Also, K ∈ N, {bn,f,k}Ff=1 ⊆ R≥0,
and {an,k,t}Tt=1 ⊆ R≥0 denote the number of bases in NMF,
the kth nonnegative base for source n, and the kth nonneg-
ative activation for source n, respectively. The parameters of
IPSDTA-JD-T are {Pf,0, Pf,ℓ, bn,f,k, an,k,t}n,f,k,t,ℓ.

IPSDTA-JD-F. IPSDTA-JD-F is an acceleration of IPSDTA
proposed in [23] and is defined from IPSDTA-JD-T by swap-
ping the symbols (t, T ) and (f, F ), tying the parameters as
P0 := P1 = · · · = PT , and letting all the nonzero elements of
P0 be free parameters (not restricted to the Toeplitz structure).

Note that if L = 0 (and [L] = ∅) then the model of IPSDTA-
JD-T/F is identical to that of ILRMA (see Proposition 3). In
this sense, IPSDTA-JD-T/F can be viewed as an extension of
ILRMA by exploiting inter-frame/inter-frequency correlation
of source spectra by the non-diagonal blocks of {Pf}Ff=1 or
P0, respectively. Besides that, we obtain the following.

Proposition 4. The model of WPE defined by (18), (19), and
(20) is identical to that of IPSDTA-JD-T if they have the same
Cλn

. The difference is only in the parameters in the models.

Proof. Let Pf,0 = Wf and Pf,ℓ = Qf,ℓWf for all f ∈ [F ]
and ℓ ∈ [L] in (21). Then, the model of WPE is rewritten as⊕

f∈[F ] P
H
f xf ≃ CN (0,

∑
n∈[N ] diagλn), λn ∈ Cλn

,

which is nothing but the model of IPSDTA-JD-T.

The proof of Proposition 4 indicates that, while WPE defined
by (18), (19), and (20) optimizes the separation filters {Wf}f
and the dereverberation filters {Qf,ℓ}f,ℓ separately, IPSDTA-
JD-T optimizes them simultaneously by introducing the new
parameters {Pf,0 := Wf , Pf,ℓ := Qf,ℓWf}f,ℓ. This may be
an advantage of IPSDTA-JD-T against WPE.

In what follows, we present an optimization algorithm
for IPSDTA-JD-T (but omit that for IPSDTA-JD-F due to
space limitations). Once the parameters are estimated, BSS
can be attained by (9) in IPSDTA-JD-T/F. In IPSDTA-JD-T,
dereverberation as well as BSS can also be achieved by

z̃n,f =
(⊕T

t=1 P
H
f,0

)−1 (⊕T
t=1 diag en

)
PH
f xf . (23)

The parameters are estimated by solving the following two
optimization problems alternately (see also Subsection III-C).

Optimization problem for P .

minimize
{P̂f}f

JP :=
∑
f,n

e⊤n P̂
H
f Ĝf,nP̂fen − 2

∑
f

log |detPf,0| .

Here, we define xf,t := 0 for t ∈ Z with t ≤ 0, and

P̂f := [P⊤
f,0, P

⊤
f,1, . . . , P

⊤
f,L]

⊤ ∈ C(L+1)N×N ,

x̂f,t := [x⊤
f,t,x

⊤
f,t−∆, . . . ,x

⊤
f,t−∆+L−1 ]

⊤ ∈ C(L+1)N ,

Ĝf,n := 1
T

∑
t∈[T ]

x̂f,tx̂
H
f,t∑

k∈[K] bn,f,kan,k,t
∈ S(L+1)N

+ .

We propose to solve this problem by a block coordinate de-
scent (BCD) method that successively optimizes each column
of P̂f , i.e., p̂f,n := P̂fen for each n ∈ [N ]. In each iteration,
p̂f,n is updated to be a stationary point, which corresponds to
a global minimum of the objective function JP with respect
to p̂f,n. This update formula is given as follows:

ĥf,n := (((PH
f,0)

−1en)
⊤,0⊤

NL)
⊤ ∈ C(L+1)N ,

p̂f,n ← Ĝ−1
f,nĥf,n

(
ĥH
f,nĜ

−1
f,nĥf,n

)−1/2

∈ C(L+1)N .

Optimization problem for θ := {bn,f,k, an,k,t}n,f,k,t.

minimize
θ

∑
n,f,t

[
|e⊤(n,t)P

H
f xf |2∑

k bn,f,kan,k,t
+ log

∑
k

bn,f,kan,k,t

]
subject to bn,f,k, an,k,t ∈ R≥0 (∀n, f, k, t),
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TABLE II
SOURCE SEPARATION PERFORMANCE IN TERMS OF SDR [DB]

Method ILRMA IPSDTA-JD-T IPSDTA-JD-F
SDR 7.53 8.02 7.12

SDR (init. by ILRMA) - - 7.74

where the subscript of e(n,t) is read as (n, t) := N(t−1)+n.
This problem is nothing but Itakura-Saito NMF and multiplica-
tive update rules can be derived as follows (see, e.g., [8]):

bn,f,k ← bn,f,k

√∑
t |e⊤(n,t)P

H
f xf |2an,k,t(

∑
k bn,f,kan,k,t)

−2∑
t an,k,t(

∑
k bn,f,kan,k,t)

−1

an,k,t ← an,k,t

√√√√∑
f |e⊤(n,t)P

H
f xf |2bn,f,k(

∑
k bn,f,kan,k,t)

−2∑
f bn,f,k(

∑
k bn,f,kan,k,t)

−1

VI. EXPERIMENT

A. Conditions
An experiment was carried out to compare the BSS perfor-

mance of the following three methods: the proposed IPSDTA-
JD-T and IPSDTA-JD-F (see Section V), and the conventional
ILRMA [8] as a baseline. As evaluation data, the live recorded
speech data in the dev1 dataset provided by SiSEC2008 [24]
was used, and 72 determined stereo mixtures (M = N = 2)
were prepared in total by adding each pair of clean spatial
images having the same audio ID in the dataset. The rever-
beration time (RT60) was either 130 ms or 250 ms.

For all methods, the number of iterations in the optimization
was set to 100, and the number of bases in NMF was set to 2.
In the proposed IPSDTA-JD, ∆ = 2 and L = 1 were chosen.
The sampling frequency was 16 kHz, the frame length was
4096 (256 ms), and the frame shift was 1028 (64 ms).

For all methods, the decorrelation filter was initialized as
P = IFTM while the NMF parameters were randomly initial-
ized from the uniform distribution over (0, 1). For separation
filters, IPSDTA-JD-F used (9) while IPSDTA-JD-T used (23)
to avoid a numerical instability. For IPSDTA-JD-F, the case
where the parameters were initialized by the result of ILRMA
was also tested.

B. Results
Table II shows the resultant SDR [25] averaged over 72

samples. The proposed IPSDTA-JD-T outperformed ILRMA
even though the temporal decorrelation effect was restricted
to L = 1, which shows the efficacy of IPSDTA-JD-T. As for
IPSDTA-JD-F, it degraded or slightly improved the separation
performance given by ILRMA depending on the initialization
scheme used. This indicates that IPSDTA-JD-F is sensitive to
initialization and that the model of ILRMA may be improved
by carefully considering inter-frequency correlation.

VII. CONCLUSION

We proposed LCA-JD, a unifying framework for BSS
based on the joint diagonalizability constraint on covariance
matrices, and revealed that a variety of conventional methods
can be interpreted as special cases of the framework. We also
proposed the new BSS methods, IPSDTA-JD, as an example
of LCA-JD, and confirmed its effectiveness in the experiment.
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