
NAViDAd: A No-Reference Audio-Visual Quality
Metric Based on a Deep Autoencoder
Helard Martinez and Mylène C.Q. Farias

University of Brasilia
Brasilia, Brazil

helardb@unb.br, mylene@ieee.org

Andrew Hines
University College Dublin

Dublin, Ireland
andrew.hines@ucd.ie

Abstract—The development of models for quality prediction
of both audio and video signals is a fairly mature field. But,
although several multimodal models have been proposed, the
area of audio-visual quality prediction is still an emerging area. In
fact, despite the reasonable performance obtained by combination
and parametric metrics, currently there is no reliable pixel-based
audio-visual quality metric. The approach presented in this work
is based on the assumption that autoencoders, fed with descriptive
audio and video features, might produce a set of features that
is able to describe the complex audio and video interactions.
Based on this hypothesis, we propose a No-Reference Audio-
Visual Quality Metric Based on a Deep Autoencoder (NAViDAd).
The model visual features are natural scene statistics (NSS) and
spatial-temporal measures of the video component. Meanwhile,
the audio features are obtained by computing the spectrogram
representation of the audio component. The model is formed by
a 2-layer framework that includes a deep autoencoder layer and
a classification layer. These two layers are stacked and trained
to build the deep neural network model. The model is trained
and tested using a large set of stimuli, containing representative
audio and video artifacts. The model performed well when tested
against the UnB-AV and the LiveNetflix-II databases.

Index Terms—audio-visual, quality metrics, no-reference, dis-
tortions, autoencoder, NAViDAd

I. INTRODUCTION

The great progress achieved by communications technology
in the last twenty years is reflected by the amount of multi-
media services currently available, such as digital television,
IP-based video transmission, and mobile services. Among
the most popular multimedia services are IP-based transmis-
sion, including video conference (Skype, Google Hangout,
Facebook Video, FaceTime) and on-demand streaming media
(Netflix, iTunes, Hulu, Amazon). Yet, it is understood that the
success of these kind of services relies on their trustworthiness
and the provided quality of experience [1]. Therefore, the
development of efficient real-time monitoring quality tools,
which can quantify the audio-visual experience, is key to the
success of any multimedia service or application. Although
the research in audio and video quality assessment (tackled
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as individual modalities) is fairly mature [2], there are still
several issues to be solved in the area of audio-visual quality.

Audio and visual descriptive features have been used in
several applications, such as speech intelligibility and pattern
recognition [3], [4]. Their performance naturally relies on
how good these features are able to describe the signal
characteristics, specially in terms of human perception. In the
quality assessment area, there are several audio and video
quality metrics that achieve very good performances using
audio and video features, respectively, to predict the perceived
quality [2]. But, currently there is no feature-based quality
metric that estimates the quality of an audio-visual signal,
taking into consideration the characteristics the audio and
visual components and their important interactions.

Considering these issues, Machine Learning (ML)
paradigms arise as an appealing option to tackle the audio-
visual quality assessment problem from a different perspective.
Quality assessment methods based on ML are capable of
mimicking human reactions to media distortions, instead of
explicitly modelling it. Soni et al. used a deep autoencoder
strategy to design a non-intrusive speech quality assessment
method [5]. The proposed metric adopts a two-layer approach
to treat speech background noise distortions, using audio
features in the form of spectrograms. In the first layer, a
speech spectrogram is passed by a two-layer autoencoder to
produce a low-dimensional set of new features. A mapping
function between the features and subjective scores is found
using an artificial neural network (ANN). Results showed that
this deep autoencoder approach produced better descriptive
features than Filterbank Energies (FBEs) and more accurate
speech quality predictions. We believe that deep autoencoders
techniques can be used for the particular task of finding ways
to describe the audio and video components interact.

In this work, we design a No-reference Audio-VIsual Qual-
ity metric based on a Deep AutoencoDer (NAViDAd). The
proposed model seeks to blindly estimate audio-visual quality
for streaming multimedia applications. To estimate the audio-
visual quality, the model uses both audio and video descriptive
features. This way, it takes into account not only for the quality
of the individual components, but also their interactions. First,
a set of features that describe the characteristics of the audio
and video components are computed. Next, the set of features
are passed to a trained model that is composed of two layers:
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Fig. 1. Block diagram of the Audio-VIsual Quality metric based on a Deep
AutoencoDer (NAViDAd).

an autoencoder layer and a classification layer. The autoen-
coder layer produces a low-dimensional set of features. At this
stage, it is expected that these low-dimensional set of features
are able to describe the complex interaction between audio
and video stimulus. The classification layer is responsible of
mapping the features into audio-visual quality scores. Finally,
the last stage takes the model output to processed it and
calculate the overall audio-visual quality. Figure 1 depicts the
block diagram of NAViDAd, depicting all three stages of the
proposed metric.

The structure of this paper is organized as follows. In
Section II, the architecture of the proposed metric is described.
In this Section we detail the extraction of the audio and video
features as well as the proposed audio-visual quality assess-
ment model. In Section III we present the results obtained with
the proposed model. Finally, in Section IV some conclusions
and final comments are presented.

II. PROPOSED ARCHITECTURE

In this section, we describe the architecture of the proposed
NR audio-visual quality metric, which includes: feature ex-
traction, model training and testing, and output processing.

A. Extraction of Audio-Visual Features

Natural Scene Statistics (NSS) and the spatial and temporal
information were used as visual features. We used the feature
extract function from the Diivine image quality metric to
extract a total of eighty-eight (88) features [6], resulting in
an 88-by-n matrix (n is the number of video frames) that rep-
resents the NSS features. To capture the spatial and temporal
characteristics of the video, we used the algorithm proposed
by Ostaszewska and Kloda [7] to compute the spatial and
temporal information, helping characterize important visual
distortions (e.g. freezing and packet loss distortions). Spatial

and temporal values are computed for each video frame,
resulting in a 2-by-n matrix that represents the spatial and
temporal features. Both sets of features are merged to form
the visual features of a video sequence, represented by a 90-
by-n matrix.

ViSQOL [8] and ViSQOLAudio [9] are full reference
speech and audio quality metrics based on the same underlying
platform. They use an intensity spectrogram representation of
the audio signal, i.e. a time-frequency intensity representation
of the audio activity, as the audio feature source for quality
prediction. In this work, we use the feature extraction func-
tionality of ViSQOL to process the audio signal and obtain a
25-by-m matrix, where 25 is the number of frequency bands
and m is the number of audio frames in the signal.

B. Combination of Audio-Visual Features

Once the visual features (90-by-n matrix) and the audio fea-
tures (25-by-m matrix) are obtained, they are merged together
resulting in a total of 115 descriptive features. However, given
that the number of video frames (n) and the number of audio
samples (m) are not necessarily the same, a scaling process
is required to match these two sets before merging them. To
uniformize the length of the two matrices, we simply replicated
the values of the matrix that has the shorter length, so that
it matches the size of the larger matrix. Since the number of
frame videos (n) is generally smaller than the number of audio
samples (m), values of the visual feature set are replicated
to match the audio feature set. Once the length of both sets
matches, they are merged to form a 115-by-m matrix, denoted
as the audiovisual feature set (115 is the sum of the 90 visual
features plus the 25 audio features).

Additionally, a target set is built using the subjective scores
associated with each video under analysis. This set contains
the target quality scores used during the model training. Since
in an ACR quality scale there are 4 quality groups, which
represent the quality intervals assigned to the stimuli, the target
set is a 4-by-m matrix composed of zeros and ones, where 4
is the number of quality groups and m is the length of the
features matrix (115-by-m). The target set is built by taking
the average subjective score associated with the stimuli and
setting to one the corresponding quality group. For example,
a sequence that has a subjective score of 1.65 is assigned the
quality group 1 since the score is in the interval [1, 2), while
a sequence with a subjective score of 3.52 is assigned to the
quality group 3 since the score is in the interval [3, 4). In
summary, the row corresponding to the corresponding quality
group is set to one and the rest of the rows are set to zero.
Considering that each column represents a video sample, this
setup guarantees that each sample has only one quality group
associated to it. During the model training, this target set is
used to map the corresponding quality group of each sample.

Then, the feature and target matrices for all the audiovisual
signals of the dataset are concatenated to produce two large
global sets. The number of rows of the global feature and
target matrices are 115 and 4, respectively. Meanwhile, the
columns of the matrices are denoted by M , which represents
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Fig. 2. Simplified block diagram of the No-Reference Audio-Visual Quality
Metric Based on a Deep Autoencoder (NAViDAd).

the sum of all number of video samples from the training
dataset. These two global sets served as input for the model
training at different stages.

C. NAViDAd Training

A basic block diagram of the proposed No-Reference
Audio-Visual Quality Metric Based on a Deep Autoencoder
(NAViDAd) is presented in Figure 2. The training phase con-
sists of two main layers: 1) the autoencoder layer, that receives
as input the global feature set, and 2) the classification layer,
which receives the global target set and a low-dimensional set
of features. Once trained, the resulting models are stacked and
trained to build the final deep audiovisual quality model.

1) Autoencoder Layer: The autoencoder layer produces a
low-dimensional set of features that are able to describe the
audio and video characteristics, as well as the distortions asso-
ciated with the signal. Two sub-layers (autoencoders) are used
in this phase. It is worth mentioning that this is a demonstrative
structure, further tests might add more sub-layers depending
on the requirements of the model. The first layer receives the
global 115-by-m matrix containing the audiovisual features
from the training stimuli. This first auteoncoder is trained
using a hidden layer of size 60, generating as output a 60-
by-m matrix denoted as Features 1. Another output of this
layer is a trained autoencoder, denoted as Autoencoder 1. The
second autoencoder has a hidden layer of size 25 and is trained
using as input the Features 1. It generates as output a 25-by-
m matrix, denoted as Features 2, and a trained autoencoder,
denoted as Autoencoder 2. The training parameters for the two
autoencoders are the following: a linear transfer function is set
for the decoder, the L2 weight regularizer is 0.001, the sparsity
regularizer is 4, and the sparsity proportion is 0.05.

In summary, the autoencoder produces: two trained autoen-
coders (Autoencoder 1 and Autoencoder 2) and two sets of
features (Features 1 and Features 2). From these outputs,
only Features 2 is used as input to the following layer: the
classification layer. Autoencoder 1 and Autoencoder 2 are used
during the overall training of the deep neural network model.

2) Classification Layer: This layer has the goal of finding a
mapping function between the input feature set of the training
stimuli and the corresponding subjective scores. To obtain this
mapping, a softmax function is used to discover the quality
group corresponding to the set of features. This layer receives
the Features 2 set obtained in the previous layer and a 4-
by-m target set and performs the training of the classification
function. The resulting function, denoted as Soft Net, is trained
to generate a matrix containing the probabilities that a certain
sample belongs to each quality group. After the autoencoders
(Autoencoder 1 and Autoencoder 2) and the classification
function (Soft Net) are trained, they are stacked to form the
deep neural network (Deep Autoencoder Network). Finally,
the network is trained using the global feature and the global
target sets gathered in the previous layers.

A more detailed description of the entire training procedure
and information regarding the parameters used for training the
model can be found at [10].

D. NAViDAd Testing
To extract the audio-visual features of the test stimuli,

the testing stage uses the same procedure used in the train-
ing stage. The extracted set of features (again, a 115-by-m
matrix) are, then, passed to the deep autoencoder network.
Next, the output (4-by-m matrix) is processed to compute
the audiovisual predicted quality. First, the maximum value
of each column and its corresponding row index in the 4-
by-m matrix are computed. Then, a 1-by-m vector is built
by adding the index and the maximum value, i.e. for each
column the corresponding quality group index is summed to
the corresponding probability value resulting in a quality (real)
number in the interval [1, 5]. Finally, the quality scores of all
m columns are averaged and the overall audiovisual quality
score is computed.

III. PERFORMANCE ANALYSIS

The NAViDAd model was trained and tested using se-
quences from the UnB-AVQ database. The UnB-AVQ is a
large dataset of audio-visual stimuli (video sequences with
accompanying audio) with their corresponding quality scores
[11]. In this work, we used the third part (Experiment 3) of
this dataset, which contains a total of 800 sequences with
combinations of audio and video distortions [11]. The video
distortions were Bitrate compression, Packet-Loss, and Frame-
Freezing. The audio distortions were: Background noise,
Chop, Clip, and Echo. Detailed information regarding the
experiment procedure and the distortion parameters can be
found in our previous work [11].

We used a 10-fold cross-validation method to train and
test the proposed metric. We compared NAViDAd with the
following quality metrics:
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• FR visual metrics: SSIM and PSNR;
• NR visual metrics: DIIVINE, VIIDEO, BIQI, NIQE, and

BRISQUE;
• FR audio metrics: VISQOLAudio, PEAQ, and VISQOL

(speech);
• NR Audio metric: P.563 (speech);
• NR Audio-visual metrics: Linear, Minkowski, and Power

models, using DIIVINE and P.563.
It is worth pointing out that these metrics were designed for
a variety of contexts and were trained with different content.
With respect to the audio-visual metrics, given the limitation
of space, we have chosen to combine the outputs of the best
performing NR audio and video quality metrics.

Table I presents the Pearson and Spearman correlation
coefficients (PCC and SCC, respectively), along with the
root mean square error (RMSE) obtained for the considered
visual and audio-visual quality metrics. Results are organized
according to the type of video distortion, given that the visual
quality metrics cannot differentiate audio degradations in the
stimuli. From Table I, it can be observed that NAViDAd has
the best overall accuracy performance (All), when compared
to the other visual quality metrics. As for the audio-visual
combination models, NAViDAd also shows a clear advantage.
When we consider the type of visual distortion, NAViDAd
presents the best performance for both frame freezing (0.91)
and packetloss (0.86) distortions. Notice that several visual
(SSIM, NIQE, BRISQE) and audio-visual quality metrics
present a lower performance for one type of visual distortion,
while NAViDAd achieves a consistent performance.

Table II presents the results for audio and audio-visual
metrics. This time, the results are separated by the audio dis-
tortions, given that the audio metrics cannot differentiate video
distortions in the stimuli. From Table II, it can be observed
that NAViDAd has the best overall accuracy performance (All),
when compared to the audio and speech quality metrics. This
advantage was expected since audio and speech metrics use
only the audio component to predict the perceived quality.
As for the audio-visual combination models, NAViDAd also
shows a clear advantage. Regarding the audio distortions,
interestingly, NAViDAd presents a better performance for chop
and echo distortions (0.92 and 0.90). With regard to the audio-
visual combination models, it is clear that NAViDAd performs
better and shows a clear advantage.

For a better visualization of the results, Figure 3 (a) and (b)
depicts bar plots of the overall PCC and SCC values (over
the 10 folds) for all metrics. Besides the high correlation
values presented by the NAViDAd metric, it can observed
that results presented a small variation on both PCC and
SCC coefficients. This shows that NAViDAd’s results are very
consistent compared to the rest of the literature metrics.

To validate the proposed method, we performed a cross-
validation test that consists of testing the method on an
independent database, for which no training was performed.
With this goal, we tested NAViDAd on the LiveNetflix-II
Database, provided by the Laboratory for Image and Video
Engineering (LIVE) of the University of Texas at Austin [19].

TABLE I
PCC, SCC, RMSE FOR THE FR AND NR VISUAL AND AUDIO-VISUAL

QUALITY METRICS, TESTED ON THE UNB-AVQ DATABASE.

Metric Measure Packet-Loss Frame-Freezing All
PSNR PCC 0.8997 0.8629 0.7694

SCC 0.9455 0.8833 0.7368
RMSE 19.2054 16.5837 18.0728

SSIM [12] PCC 0.8563 0.3899 0.3620
SCC 0.8500 0.3727 0.3579
RMSE 2.7378 2.2027 2.4579

DIIVINE [6] PCC -0.8071 -0.8647 -0.8344
SCC -0.8182 -0.5167 -0.7519
RMSE 2.4662 2.9484 2.6939

VIIDEO [13] PCC -0.7968 -0.9883 -0.8496
SCC -0.6729 -0.9234 -0.7834
RMSE 2.2337 2.6804 2.4449

BIQI [14] PCC -0.8575 -0.9022 -0.8310
SCC -0.9382 -0.6000 -0.8799
RMSE 34.8427 32.6918 33.8917

NIQE [15] PCC -0.7608 -0.9332 -0.8394
SCC -0.7798 -0.7289 -0.7195
RMSE 2.9388 2.4057 2.7119

BRISQUE [16] PCC -0.7094 -0.9525 -0.8395
SCC -0.6360 -0.9662 -0.7728
RMSE 45.1371 41.4226 43.5049

AV-Linear PCC 0.3919 0.5501 0.4431
SCC 0.2455 0.6333 0.3368
RMSE 10.5249 11.0035 10.7430

AV-Minkowski PCC 0.2912 0.4594 0.3422
SCC 0.2091 0.6333 0.3143
RMSE 1.9879 2.4289 2.1973

AV-Power PCC -0.6273 -0.6938 -0.6616
SCC -0.6727 -0.4333 -0.6075
RMSE 24.2614 23.7806 24.0462

NAViDAd PCC 0.8638 0.9167 0.8819
SCC 0.8773 0.9050 0.8904
RMSE 0.5931 0.5718 0.5850

TABLE II
PCC, SCC, AND RMSE FOR THE FR AND NR AUDIO AND AUDIO-VISUAL

QUALITY METRICS, TESTED ON THE UNB-AVQ DATABASE.

Metric Measure Noise Chop Clip Echo All
VISQOLAudio [9] PCC 0.7945 0.9909 0.7429 0.6844 0.6008

SCC 0.7000 1.0000 0.4928 0.5218 0.4781
RMSE 2.4702 2.2047 2.0815 2.2300 2.2464

VISQOL [8] PCC 0.6102 0.9915 0.5084 0.4963 0.4236
SCC 0.7000 1.0000 0.4928 0.5218 0.4645
RMSE 2.6143 2.2045 2.1639 2.3136 2.3341

PEAQ [17] PCC 0.7573 0.9347 0.8261 0.7096 0.7689
SCC 0.2000 1.0000 0.3189 0.3479 0.3437
RMSE 6.3196 5.1643 5.9748 6.0418 5.9704

P.563 [18] PCC 0.7305 0.9964 0.9413 0.7752 0.7037
SCC 0.8000 1.0000 0.8407 0.4638 0.6367
RMSE 1.3415 1.3252 1.2310 1.2004 1.2650

AV-Linear PCC 0.4520 0.9649 0.7718 0.0409 0.4431
SCC 0.6000 1.0000 0.3143 -0.2571 0.3368
RMSE 10.9449 10.7825 10.6525 10.6429 10.7430

AV-Minkowski PCC 0.3032 0.9109 0.6881 -0.2842 0.3422
SCC 0.6000 1.0000 0.1429 -0.2571 0.3143
RMSE 2.3585 2.2612 2.0770 2.1419 2.1973

AV-Power PCC -0.7187 -0.6990 -0.5271 -0.8383 -0.6616
SCC -0.6000 -0.5000 -0.6000 -0.7714 -0.6075
RMSE 23.7961 24.0376 24.2251 24.0783 24.0462

NAViDAd PCC 0.8879 0.9252 0.8794 0.9044 0.8819
SCC 0.9200 1.0000 0.8629 0.9086 0.8904
RMSE 0.5764 0.6125 0.5406 0.6013 0.5850

This database is composed of 420 sequences, with video com-
ponents at a Full HD resolution (1920×1080, 4:2:0, 24 fps).
The database contains a diverse content, which includes action,
documentary, video games, and sports videos. The source
videos are processed with 7 different network conditions and
with 4 bitrate adaptation strategies. No audio degradations
were included in the database. A total of 65 subjects rated
the overall audiovisual quality of the sequences.

Table III shows the LiveNetflix-II results. Since the database
does not include audio degradations, we only show the re-
sults for the FR and NR visual quality metrics. It is worth
pointing out that, as there are no audio degradations, the
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(a) PCC - UnB-AV (b) SCC - UnB-AV (c) PCC - LiveNetflix (d) SCC - LiveNetflix

Fig. 3. Bar plot of PCC and SCC gathered from testing the litarature metrics on the UnB-AV database and the Live Netflix database.

TABLE III
PCC, SCC, AND RMSE GATHERED FROM TESTING THE FR AND NR

VISUAL QUALITY METRICS ON THE LIVENETFLIX-II DATABASE.

Full-Reference No-Reference
Measure PSNR SSIM DIIVINE VIIDEO BIQI NIQE BRISQUE NAViDAd
PCC 0.6981 0.7333 -0.8364 -0.6598 -0.4263 -0.7550 -0.7271 0.8611
SCC 0.6911 0.7123 -0.8106 -0.7153 -0.4724 -0.7701 -0.7115 0.8599
RMSE 32.2445 2.3024 2.6126 2.5265 38.3084 3.8324 56.2907 0.5929

visual quality metrics have a clear advantage in this database.
Unfortunately, up to our knowledge, there are no audio-
visual quality databases that include both audio and video
degradations. Nevertheless, the proposed method performed
better than the visual (and audio-visual) quality metrics, with
correlation coefficients of around 0.86. Figures 3 (c) and (d)
present the bar plots for the average PCC and SCC values
(over the 10 folds) for the tested metrics. As with the UnB-AV
database, results show that the NAViDAd correlation values
varied very little across the simulations, which shows the
consistency of the metric. We believe NAViDAd can be used
in real-time streaming environments, specially in cases where
audio distortions are expected to happen.

IV. CONCLUSIONS

In this work, we proposed a no-reference audio-visual
quality metric, which is base on a deep autoencoder technique.
The proposed model used a set of audio and video features to
estimate the overall audiovisual quality. The model is formed
by a 2-layer framework that includes a deep autoencoder layer
and a classification layer. These two layers are stacked and
trained to build the deep neural network model. These feature
sets were passed to a two-layer autoencoder that produced a
set of features with lower dimension. Then, a classification
function mapped these features into subjective scores. Results
showed that the proposed approach estimates the perceived
quality of audio-visual sequences with good accuracy. The
model presented a significant advantage when compared to
several video, audio, and audio-visual objective metrics from
the literature. The model was also tested on a external database
and also presented a good performance. We believe better
results can be achieved with the refinement of the network
parameters. In addition, further tests (e.g. an ablation study)
can be made in order to determine the relative importance of
audio and video features in the proposed system.
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