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Abstract—The autoregressive (AR) model is a widely used
model to represent the time series data from numerous ap-
plications, for example, financial time series, DNA microarray
data, etc. In all such applications, issues with missing values
frequently occur in the data observation or recording process.
Traditionally, the parameter estimation for AR models of order
p (AR(p)), from data with missing values has been considered
under the Gaussian innovation assumption, and there does not
exist any work addressing the issue of missing data for the
heavy-tailed AR(p) model. This paper proposes an efficient
framework for the parameter estimation from incomplete heavy-
tailed AR(p) time series based on the stochastic approximation
expectation maximization (SAEM) coupled with a Markov Chain
Monte Carlo (MCMC) procedure. The proposed algorithm is
computationally cheap and easy to implement. Simulation results
demonstrate the efficacy of the proposed framework.

Index Terms—AR model, heavy-tail, missing values, stochastic
EM, MCMC

I. INTRODUCTION

Time series data play an important role in data analysis, and

its applications span across disciplines like science, engineer-

ing, and social science. The autoregressive (AR) model is a

widely used model to understand time series data [1]–[3]. An

AR model of order p, AR(p), is defined as

yt = ϕ0 +ϕTxt−1 + εt, (1)

where yt is the t-th observation, xt−1 = [yt−1, . . . , yt−p]
involves the previous p observations, ϕ0 is a constant, ϕ =
[ϕ1, . . . , ϕp] is the autoregressive coefficient, and εt is the

innovation associated with the t-th observation. Basically, each

sample in an AR time series is a linear combination of previous

observations with a stochastic innovation.

Traditionally, the innovation εt is assumed to be Gaussian

distributed [4]. However, in many real applications, the Gaus-

sian assumption is no longer valid, as the data do not follow the

Gaussian distribution, but instead show heavy tails due to the

data heterogeneity, the existence of outliers, or simply the data

generating process. Some examples are, the stock returns [1],

[5], the brain fMRI [6], and the black-swan events in animal

population [7]. For these cases, one may seek an AR model

with the innovations following a heavy-tailed distribution such

as the Student’s t-distribution. The Student’s t AR model

performs well for the heavy-tailed AR time series [8]–[10].
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In practice, missing values frequently appear in the data

observation or recording process. There are various reasons

that can lead to missing values: values may not be measured,

values may be measured but get lost, or values may be

measured but are considered unusable [11]. Therefore, the

investigation of the AR time series with missing values is

of significant interest. Although there are numerous works

about Gaussian AR time series with missing values [12]–[14],

less attention has been paid to heavy-tailed AR time series

with missing values, since the parameter estimation in such a

case is much more complicated due to the intractable problem

formulation.

Towards this, in a recent work [15], we have developed

an efficient algorithm for the parameter estimation of the

Student’s t AR(1) with missing values based on the stochastic

approximation expectation maximization-Markov chain Monte

Carlo (SAEM-MCMC) algorithm. In the present paper, we

consider the more general case, the Student’s t AR(p) time

series with missing values. This extension from the AR(1)

to the AR(p) is non-trivial. To apply the SAEM-MCMC

algorithm, the sampling from the posterior distribution of

missing data is required in each iteration. Since, in AR(p)
time series, each sample depends on the previous p samples

instead of just one, the posterior distribution of missing data is

more complicated and difficult to sample from. To deal with

this challenge, we propose an efficient Gibbs sampling scheme

to draw realizations from the posterior distribution, and a low

cost algorithmic framework for the parameter estimation of

the Student’s t AR(p) model from incomplete time series has

been developed. Simulation results reveal the usefulness of the

proposed framework.

II. HEAVY-TAILED AR(P) WITH MISSING VALUES

A Student’s t AR(p) model can be expressed as yt = ϕ0 +
ϕTxt−1+εt, with the innovations εt’s following a zero-mean

Student’s t-distribution εt
i.i.d.∼ t

(
0, σ2, ν

)
. Suppose we have a

Student’s t AR(p) time series with length T , but some yt’s may

be missing due to various reasons, and they are denoted by

NA (not available). Here, we assume that the first p samples

are observed, and the missing-data mechanism is ignorable,

i.e., the missingness does not depend on the value [11]. Let

us denote the set of the indexes of the observed yt’s except the

first p observations by Co, and the set of the indexes of the
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missing yt’s by Cm. Also denote y = (yt, p+ 1 ≤ t ≤ T ),
yo = (yt, t ∈ Co), and ym = (yt, t ∈ Cm). Ignoring the

marginal distribution of the first p observations (treat them

as deterministic), the log-likelihood of the observed data is

l (θ;yo) = log

(∫
p (y;θ) dym

)
(2)

= log

(∫ T∏
t=p+1

ft
(
yt;ϕ0 +ϕTxt−1, σ

2, ν
)
dym

)
,

where ft
(
y;μ, σ2, ν

)
=

Γ( ν+1
2 )√

νπσΓ( ν
2 )

(
1 + (y−μ)2

νσ2

)
is the prob-

ability density function (pdf) of the Student’s t-distribution,

and θ =
(
ϕ0,ϕ, σ

2, ν
)
. Then the maximum likelihood (ML)

estimation problem for θ can be formulated as

maximize
θ∈Θ

l (θ;yo) . (3)

where Θ =
{
θ|σ2 > 0, ν > 0

}
. The log-likelihood l (θ;yo)

involves integrals and has no closed-form expression, there-

fore, we cannot solve this optimization problem directly. To

handle this, we resort to the expectation maximization (EM)

type algorithm, which solves this ML problem by optimizing

a sequence of simpler sub-problems iteratively.

III. PARAMETER ESTIMATION VIA SAEM-MCMC

The EM algorithm is a general iterative algorithm to solve

ML estimation problems with missing data or latent variables.

In each iteration, the EM algorithm first performs an expec-

tation (E) step, which computes the expectation function of

the complete data log-likelihood with respect to the posterior

distribution of latent variables given the current estimates, and

then a maximization (M) step, which updates the estimates by

maximizing the expected complete data log-likelihood [16].
For the ML problem (3), if we only regard ym as the

latent variable and apply the EM type algorithm, it is dif-

ficult to obtain the expectation of the complete data log-

likelihood and also maximize it. Interestingly, the Student’s t-
distribution can be regarded as a Gaussian mixture [17]. Since

εt ∼ t
(
0, σ2, ν

)
, we can present it as the Gaussian mixture

εt|σ2, ν, τt ∼ N
(
0,

σ2

τt

)
, τt ∼ Gamma

(ν
2
,
ν

2

)
, (4)

where τt is the mixture weight. Then we can use the EM

type algorithm to solve the problem by regarding both ym

and τ = {τt, p+ 1 ≤ t ≤ T} as latent variables. The resulting

expectation of the complete data log-likelihood at iteration k
can be expressed as

Q
(
θ, S̄(k)

)
= Ep(ym,τ |yo,θ(k)) [log (p (yo,ym, τ | θ))]

=
ν

2
s̄
(k)
1 − s̄

(k)
2

2σ2
− ϕ2

0s̄
(k)
3

2σ2
− ϕT S̄

(k)
4 ϕ

2σ2
+

ϕ0s̄
(k)
5

σ2

+
ϕT s̄

(k)
6

σ2
− ϕ0ϕ

T s̄
(k)
7

σ2
+ (T − p)

(
ν log

(
ν
2

)
2

− log
(
Γ
(ν
2

))
− log

(
σ2

)
2

)
+ const., (5)

where the expectation

S̄(k) =
(
s̄
(k)
1 , s̄

(k)
2 , s̄

(k)
3 , S̄

(k)
4 , s̄

(k)
5 , s̄

(k)
6 , s̄

(k)
7

)
= Ep(ym,τ |yo,θ(k)) [S (yo,ym, τ )] , (6)

with

S (yo,ym, τ )

=

( T∑
t=p+1

(log (τt)− τt) ,
T∑

t=p+1

τty
2
t ,

T∑
t=p+1

τt, (7)

T∑
t=p+1

τtxt−1x
T
t−1,

T∑
t=2

τtyt,

T∑
t=2

τtytxt−1,

T∑
t=2

τtxt−1

)
.

However, due to the intractable form of the posterior

distribution p
(
ym, τ |yo;θ

(k)
)

, we cannot get closed-form

expression for the expectations S̄(k) and Q
(
θ, S̄(k)

)
, and thus,

the E step is intractable. To solve the unavailability of the

expectation in the E step, the SAEM algorithm, which draws

samples of latent variables from the posterior distribution and

approximates the expectation in the E step by a stochastic

approximation procedure, has been proposed [18]. Neverthe-

less, in our case, since we only know the posterior distribution

p
(
ym, τ |yo;θ

(k)
)

up to a scalar, and the proportional term

is complicated, we cannot sample from p
(
ym, τ |yo;θ

(k)
)

directly. Therefore, we resort to the SAEM-MCMC algorithm,

which generates the samples via constructing a Markov chain

[19]. The success of the SAEM-MCMC framework crucially

depends on the appropriate design of sampling scheme so that

the sampling is efficient, and the computational cost is not too

high.

A. E step

We propose a Gibbs sampling scheme to generate samples

from p
(
ym, τ |yo;θ

(k)
)

. At iteration k, given the current esti-

mate θ(k), the Gibbs sampler starts with
(
τ (k−1,l),y

(k−1,l)
m

)
(l = 1, 2 . . . , L) and generates the next sample

(
τ (k,l),y

(k,l)
m

)
via the following scheme:

• sample τ (k,l) from p
(
τ |y(k−1,l)

m ,yo;θ
(k)

)
,

• sample y
(k,l)
m from p

(
ym|τ (k,l),yo;θ

(k)
)

.

Then the expectation S̄(k) is approximated by a combination

of the previous value and the L new samples:

Ŝ(k) = Ŝ(k−1)+γ(k)

(
1

L

L∑
l=1

S
(
yo,y

(k,l)
m , τ (k,l)

)
− Ŝ(k−1)

)
,

(8)

where
{
γ(k)

}
is a nonincreasing sequence of positive step

sizes, and Q
(
θ, S̄(k)

)
is approximated by Q

(
θ, Ŝ(k)

)
.

In the following part, we give the detailed illustration about

the Gibbs sampling process. Lemma 1 indicates that, to sample

τ from p (τ |ym,yo;θ), we just need to draw a realization of

τt from certain gamma distribution for each t.
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Observation block with less than observations 

Observation block with or more than observations (full block)

Missing block

Fig. 1. AR(p) time series with missing values.

Lemma 1. Given ym, yo, and θ, the mixture weights {τt} are
independent from each other with

τt|ym,yo;θ (9)

∼ Gamma

(
ν + 1

2
,

(
yt − ϕ0 −ϕTxt−1

)2
/σ2 + ν

2

)
.

Before discussing the sampling of ym from the condi-

tional pdf p (ym | τ ,yo;θ), we introduce some definitions.

The consecutive missing values or a single missing value

between two observations are defined as a missing block, and

the consecutive observed values or a single observed value

between two missing values are defined as an observation

block (see Figure 1). For AR(1), given τ , yo, and θ, each

missing block is independent from others [15]. In addition, it

is simple to get the distribution of each missing block. Thus,

we can sample ym from p (ym | τ ,yo;θ) by sampling different

missing blocks separately, and the computational cost is low.

For AR(p), however, the missing blocks are not independent

to each other anymore in general, and it is non-trivial to obtain

the conditional pdf of ym.

Interestingly, we find that, although missing blocks in AR(p)

are not independent from each other, similar independence

structure exists in another form. To illustrate this, we define

an observation block that has p or more than p observations as

a full block. Suppose there are D full blocks in an incomplete

AR(p) time series:

y1, . . . , yt1 ,NA, . . . ,NA, yt2−q2+1, . . . , yt2 ,NA, . . . ,NA,

ytd−qd+1, . . . , ytd ,NA, . . . ,NA, yyT−qD+1
, . . . , yT .

where the d-th full block yo(d) = (ytd−qd+1, . . . , ytd) has

qi consecutive observations with q1 = t1 and tD = T . We

define all the missing blocks between two full blocks yo(d) and

yo(d+1) as the d-th missing group denoted by ym(d,d+1). Note

that, as in Figure 1, there may be some observation blocks

that have less than p consecutive observations between two

full blocks yo(d) and yo(d+1). They are denoted by yo(d,d+1).

Lemma 2 indicates that each missing groups are independent

to each other.

Lemma 2. Given τ , yo, and θ, the distribution of the missing
group ym(d,d+1) is independent of the other missing values,
and its distribution depends on the observed values yo only
through yo(d,d+1), ylp

o(d) = [ytd−p+1, . . . , ytd ]
T (the last p

observations in the previous full block yo(d)), yfp
o(d+1) =[

ytd+1−qd+1+1, . . . , ytd+1−qd+1+p

]T
(the first p observations in

the next full block yo(d+1)):

p (ym|τ ,yo;θ)

=

c∏
i=1

p
(
ym(d,d+1)|τ ,yo(d,d+1),y

lp
o(d),y

fp
o(d+1);θ

)
.

(10)

To obtain p
(
ym(d,d+1)|τ ,yo(d,d+1),y

lp
o(d),y

fp
o(d+1);θ

)
, we

first analyze the distribution of y(d+1)|τ ,ylp
o(d);θ with

y(d+1) =
[
ytd+1, . . . , ytd+1−qd+1+p

]
consisting of ym(d,d+1),

yo(d,d+1), and yfp
o(d+1). Through a recursive process based on

(1), each component of y(d+1) can be expressed as the sum of

a linear combination of elements in ylp
o(d), a linear combination

of εtd+1, . . . , εtd+1−qd+1+p, and a term only involving ϕ0 and

ϕ:

ytd+1 = ϕ0 +

p∑
i=1

ϕiytd+1−i + εtd+1, (11)

ytd+2 = ϕ0 +

p∑
i=1

ϕiytd+2−i + εtd+2

= ϕ0 +

p∑
i=2

ϕiytd+2−i + ϕ1ytd+2−1 + εtd+2

= ϕ0 +

p−1∑
i=1

ϕi+1ytd+1−i + ϕ1 ( ϕ0 +

p∑
i=1

ϕiytd+1−i

+ εtd+1 ) + εtd+1

= ϕ0 + ϕ1ϕ0 +

p−1∑
i=1

(ϕi+1 + ϕ1ϕi) ytd+1−i

+ ϕ1ϕpytd+1−p + ϕ1εtd+1 + εtd+2, (12)

...

ytd+r = ar (ϕ0,ϕ) + bT
r (ϕ0,ϕ)y

lp
o(d)

+ cTr (ϕ0,ϕ) [εtd+1, . . . , εtd+r]
T
, (13)

for r = 1, . . . , td+1 − qd+1 + p − td, where ar (ϕ0,ϕ),
br (ϕ0,ϕ), and cr (ϕ0,ϕ) are a scalar function, a p-

dimensional function, and a r-dimensional function of ϕ0 and

ϕ, respectively.

From (4), given τ , ylp
o(d), and θ, εt

i.i.d.∼ N
(
0, σ2

τt

)
for

t > td. Since the linear combination of Gaussian variables is

still Gaussian distributed, y(d+1)|τ ,ylp
o(d);θ follows a Gaus-

sian distribution N
(
μ(d),Σ(d)

)
with r-the element of μ(d)(

μ(d)

)
r
= ar (ϕ0,ϕ) + bT

r (ϕ0,ϕ)y
lp
o(d) (14)

and the element in the r-th row and j-th column of Σ(d)(
Σ(d)

)
r,j

= cTr[1:u] (ϕ0,ϕ)Cov
[
ε̃(d,u)

]
cj[1:u] (ϕ0,ϕ)

= cTr[1:u] (ϕ0,ϕ)Diag

(
σ2

τtd+1
, . . . ,

σ2

τtd+u

)
× cj[1:u] (ϕ0,ϕ) , (15)

where u = min(r, j), ε̃(d,u) = [εtd+1, . . . , εtd+u]
T

, and

cr[1:u] (ϕ0,ϕ)
(
cj[1:u] (ϕ0,ϕ)

)
is the vector of the first u

2019 27th European Signal Processing Conference (EUSIPCO)



element of cr (ϕ0,ϕ) (cj (ϕ0,ϕ)). Then its conditional dis-

tribution ym(d,d+1)|τ ,yo(d,d+1),y
lp
o(d),y

fp
o(d+1);θ also follows

a Gaussian distribution N
(
μ̃(d), Σ̃(d)

)
, and the parame-

ters μ̃(d) and Σ̃(d) can be computed easily from μ(d) and

Σ(d). Note that the coefficients ar (ϕ0,ϕ), br (ϕ0,ϕ) , and

cr (ϕ0,ϕ) do not depend on d (the number of the missing

group), but only r (the relative position in the block), which

means that they can be recycled for different missing groups.

Finally, to sample ym from p (ym|τ ,yo;θ), we just need to

draw a realization of ym(d,d+1) from a Gaussian distribution

N
(
μ̃(d), Σ̃(d)

)
for each missing group d.

Remark 3. In practice, there may be less than p observations

in the last observation block. In this case, the missing blocks

between this observation block and the last full block can still

be regarded as a missing group, and its distribution can be

computed similarly.

In summary, to draw realizations from the posterior dis-

tribution p
(
ym, τ |yo;θ

(k)
)

, the proposed Gibbs sampling

scheme just need to sample from Gaussian distributions and

gamma distributions alternatively, and the parameters of these

distributions can be easily computed.

B. M step

Setting the derivatives of Q
(
θ, Ŝ(k)

)
with respect to to ϕ0,

ϕ1 and σ2 to 0 gives

ϕ
(k+1)
0 =

(
ŝ
(k)
5 −

(
ϕ(k+1)

)T

ŝ
(k)
7

)
/ŝ

(k)
3 , (16)

ϕ(k+1) =

(
ŝ
(k)
3 Ŝ

(k)
4 − ŝ

(k)
7

(
ŝ
(k)
7

)T
)−1 (

ŝ
(k)
3 ŝ

(k)
6 − ŝ

(k)
5 ŝ

(k)
7

)
,

(17)

and(
σ(k+1)

)2

=
1

T − p

(
ŝ
(k)
2 +

(
ϕ
(k+1)
0

)2

ŝ
(k)
3 +

(
ϕ(k+1)

)T

Ŝ
(k)
4 ϕ(k+1)

− 2ϕ0ŝ
(k)
5 − 2

(
ϕ(k+1)

)T

ŝ
(k)
6 + 2ϕ

(k+1)
0

(
ϕ(k+1)

)T

ŝ
(k)
7

)
.

(18)

The ν(k+1) can be found by one-dimensional search:

ν(k+1) = argmax
ν>0

ν log
(
ν
2

)
2

− log
(
Γ
(ν
2

))
+

νŝ
(k)
1

2 (T − p)
.

(19)

According to Proposition 1 in [20], ν(k+1) always exists and

is unique.

IV. SIMULATIONS

In this section, we conduct a simulation study of the

proposed framework. First, we show the convergence and the

good estimation performance of the proposed framework on

synthetic data. We set ϕtrue
0 = 1, ϕtrue = [0.90, 0.12,−0.16],
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Fig. 2. The NRSE’s of estimates versus iterations.
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Fig. 3. Quantile-quantile plot of the innovations obtained by fitting logarith-
mic prices of the Hang Seng index to the Student’s t AR model.

(σtrue)
2

= 0.01, and ν true = 1. We randomly generate

an incomplete Student’s t AR(3) time series with length

T = 500 and the missing rate 20% based on the model (1)

with εt
i.i.d.∼ t

(
0, (σtrue)

2
, ν true

)
. Then we apply the proposed

algorithm to estimate the parameters. We use the estimates

based the Gaussian AR(3) model as the initial estimates

ϕ̂
(0)
0 , ϕ̂(0), and

(
σ̂(0)

)2
, the resulting posterior mean of the

missing values as the initial realization y
(0,l)
m , and a random

ν(0). As recommended in [21], we set L = 10, and γ(k) = 1
for 1≤ k ≤ 30 and γ(k) = 1

k−K for k ≥ 31. Figure 2 shows

the estimation errors of the estimates versus iterations. The

estimation error is measured by the normalized root square

error (NRSE) NRSE (θi) =
‖θ̂i−θtrue

i ‖
‖θtrue

i ‖ , where θi can be ϕ0,

ϕ, σ2, or ν, θ̂i is its estimate, and θtrue
i is its true value. We
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TABLE I
ESTIMATION RESULTS OF DIFFERENT METHODS ON SYNTHETIC DATA (THE NRSE’S ARE IN PARENTHESES).

ϕ̂0 ϕ̂ (σ̂)2 ν̂

True value 1.000 [0.900, 0.120,−0.160] 0.010 1.000
Student’s t AR(3) 0.979 (0.021) [0.902, 0.124,−0.164] (0.006) 0.011 (0.100) 0.998 (0.002)
Gaussian AR(3) 0.827 (0.183) [0.838, 0.147,−0.141] (0.076) 10.411 (1040) +∞ (+∞)
Kharin’s method 0.080 (0.920) [1.398, 0.046,−0.460] (0.635) 0.181 (17.1) +∞ (+∞)

TABLE II
ESTIMATION AND PREDICTION RESULTS OF DIFFERENT METHODS FOR REAL DATA.

ϕ̂0 ϕ̂ (σ̂)2 ν̂ averaged prediction errors

Student’s t AR(4) 1.299 [0.915, 0.006, 0.207,−0.253] 1.139× 10−4 7.285 2.099× 10−4

Gaussian AR(4) 1.640 [0.934,−0.017, 0.181,−0.257] 1.433× 10−4 +∞ 2.291× 10−4

Kharin’s method -0.103 [2.610,−0.178,−2.570, 1.148] 1.310× 10−5 +∞ 3.677× 10−4

can see that the proposed algorithm converges in less than

60 iterations and the final estimation error is small. Table I

compares the estimation results of the Student’s t AR model,

the Gaussian AR model [11], and Kharin’s robust estimation

method [13]. This testifies that for heavy-tailed AR time series,

the traditional methods for Gaussian distributions are too

inefficient, and significant performance gain can be achieved

by designing algorithms for the heavy-tailed AR model.

Then we test the performance of the proposed estimation

method on a real data set. Here we consider the logarithm

prices of the Hang Seng index over 121 working days from

Jan. 1, 2018 to Jun. 30, 2018 (excluding weekends and public

holidays). Through the computation of the PACF, an AR model

of order 4 is proposed to fit this time series. Figure 3 shows

the quantile-quantile (QQ) plot of the innovations obtained

by fitting this time series to the Student’s t AR(4) model.

The deviation from the straight red line indicates that the

innovations are significantly non-Gaussian and indeed heavy-

tailed. We divide the 121 logarithm prices into two parts:

the training data, which involves the first 115 samples, and

the test data, which involves the remaining 6 samples. We

randomly delete 10% of the training data, and apply the

proposed framework to fit the Student’s t AR(4) model to this

incomplete training data. After obtaining the estimate ϕ̂0 and

ϕ̂, we compute the one-step-ahead predictions for the test data

ŷt = ϕ̂0 + ϕ̂Txt−1,where t = 116, . . . , 121, and the averaged

prediction error 1
6

∑121
t=116(ŷt − yt)

2
. For comparison, we also

apply the Gaussian AR(4) model and Kharin’s method to

estimate ϕ0 and ϕ, and do the prediction. Table II shows

Student’s t AR(4) model performs better than the Gaussian

AR(4) model and Kharin’s method for this heavy-tailed AR

time series, and the proposed framework can provide reliable

parameter estimation for real data with missing values.
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