
Spectral-Spatial Classification of Hyperspectral
Images Using CNNs and Approximate Sparse

Multinomial Logistic Regression
Sezer Kutluk

Electrical-Electronics Engineering Dept.
Istanbul University-Cerrahpasa

Istanbul, Turkey
sezer.kutluk@gmail.com

Koray Kayabol
Electronics Engineering Dept.

Gebze Technical University
Kocaeli, Turkey

koray.kayabol@gtu.edu.tr

Aydin Akan
Biomedical Engineering Dept.
Izmir Katip Celebi University

Izmir, Turkey
aydin.akan@ikc.edu.tr

Abstract—We propose a technique for training convolutional
neural networks (CNNs) in which the convolutional layers are
trained using a gradient descent based method and the clas-
sification layer is trained using a second order method called
approximate sparse multinomial logistic regression (ASMLR)
which also provides a spatial smoothing procedure that increases
the classification accuracy for hyperspectral images. ASMLR
performs well on hyperspectral images, and CNNs are known to
give good results in many applications such as image classification
and object recognition. Thus, the proposed technique allows us to
improve the performance of CNNs by training the whole network
with an end-to-end framework. This approach takes advantage
of convolutional layers for spectral feature extraction, and of
the softmax classification layer for feature selection with sparsity
constraints, and an intrinsic learning rate adjustment mechanism.
In classification, we also use a spatial smoothing method. The
proposed method was evaluated on two hyperspectral images
for spectral-spatial land cover classification, and the results have
shown that it outperforms the CNN and the ASMLR classifiers
when they are used separately.

Index Terms—hyperspectral image classification, remote sens-
ing, deep learning, convolutional neural networks, logistic regres-
sion

I. INTRODUCTION

Convolutional neural networks (CNNs) are utilized in many
fields of image analysis, computer vision, and related research
and applied areas. Since CNNs yield very successful results
in many fields, in recent years, they have been applied to
hyperspectral image classification problems as well.

Hyperspectral image classification has been an active re-
search topic in several areas such as remote sensing, biomedi-
cal imaging, surveillance, and food processing. Particularly in
land cover classification the aim is to segment hyperspectral
images obtained from aerial vehicles by pixel-wise labeling
which has a lot of applications such as urban mapping,
agricultural planning, and forest monitoring.

Due to the nature of the problem, small training size
has always been an issue in land cover classification on
hyperspectral images. The number of spectral bands is very
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large when compared to the number of pixels in most hy-
perspectral classification datasets available. Therefore Hughes
phenomenon [1] can easily be encountered which makes the
problem harder to solve, especially when using deep networks
since they generally need huge training sets because of the
large number of parameters they have.

In [2], 1-D, 2-D and 3-D deep convolutional network
architectures are proposed for feature extraction from spectral
bands, spatial information, and both. Moreover, in order to
avoid overfitting, regularization with L2 norm, rectified linear
unit (ReLU), and dropout are used, and the training size is
increased by generating virtual samples. In [3], convolution
layers including deconvolution operations are utilized. Ex-
treme learning machine is used for classification. In [4], single
and double layer CNNs are tested for the classification of
hyperspectral images. Each spectral vector is expanded and
folded to form a matrix. Then the filters of different sizes are
applied to each pixel matrix. The classification performance
of CNNs are compared to support vector machine (SVM).
In [5], the spectral dimensionality is reduced by a subspace
learning technique and image patches are applied to a CNN
for further feature learning and classification. In [6], a two-
channel CNN is proposed for jointly learning spectral-spatial
features. Each channel works on either spectral or spatial
feature extraction. The extracted spectral and spatial features
are then concatenated and given to a fully connected layer
for jointly learning the spectral-spatial features. Moreover, a
transfer learning scheme is employed in order to overcome
the small sample size problem. In [7], 3-D convolutional
filters with different kernel sizes are used for jointly learning
spectral and spatial features. In this work inception module
[8] and residual learning approach [9] are utilized. In [10] the
hyperspectral image is segmented into superpixels and then
given to a deep CNN to label each superpixel. A conditional
random field (CRF) is used with a mean-field approximation
algorithm formulated with Gaussian pairwise potentials as a
recurrent neural network (RNN). Each iteration of the mean-
field algorithm is formulated as a stack of CNN layers and
the mean-field inference is considered as an RNN. In [11]
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the most informative spectral bands are iteratively selected
using fractional order Darwinian particle swarm optimization
in order to overcome the lack of training samples and the
curse of dimensionality. The selected bands are given to
the CNN for classification. In this work dither [12] is used
for the regularization of the CNN parameters in order to
avoid overfitting. In [13] a CNN is used to extract spectral-
spatial features from 3-D patches of the hyperspectral image.
Furthermore, with the Bayesian approach, spatial priors are
placed on the labels within a Markov Random Field (MRF)
model. The MRF is optimized with the α-expansion min cut
method [14].

Typically CNNs are trained using first order derivative-
based optimization techniques by backpropagating the loss
calculated at the output of the network to the former layers. In
this paper a novel convolutional neural network is proposed
with a hybrid training strategy which utilizes both first and
second order optimization techniques. The feature extraction
layers are trained with a gradient descent based algorithm, and
the softmax classification layer is trained with ASMLR [15].
ASMLR was shown to perform well on hyperspectral image
classification by modeling spectral signatures of pixels and
spatial smoothing by taking advantage of the neighborhood
information with a Bayesian approach [15], [16].

The proposed method has the following advantages:
• second order optimization helps us avoid from hand-

tuning the learning rate for the classification layer
• approximate learning helps us avoid calculating and in-

verting the exact Hessian matrix
• sparsifying the classification parameters works as a fea-

ture selection method
• regularizing the last layer helps us avoid overfitting and

train the model with a relatively small training set
• integrated spatial smoothing by placing priors on the class

labels
• end-to-end training.
The rest of the paper is organized as follows. In Section II

the proposed method is presented. In Section III experiment
design and results are given. The results and future work are
discussed in Section IV.

II. METHOD

The proposed model consists of three convolutional layers
where each layer is constructed by a combination of convolu-
tion, batch normalization, ReLU, and max pooling.

While training the network, in each epoch, first the classi-
fication layer is trained by ASMLR update rule, and convo-
lutional layer parameters are updated by backpropagation and
gradient descent. Spatial smoothing does not have parameters
to train on the training data.

A. Convolutional Neural Networks

Convolutional neural networks are multilayer neural net-
works that include the convolution operation in at least one
layer [17]. A typical convolutional neural network is con-
structed by stacking pairs of convolution layers and pooling

operators as well as additional layers to model the nonlinear-
ities and to overcome the overfitting problem. It was shown
that CNNs are good at learning abstract features automatically
by using convolution layers and pooling operators [18].

We use 1-D convolutional layers stacked to form the feature
extraction layers and apply the spectral vectors to the network
as the input data. We apply the backpropagation procedure for
training the parameters of the convolutional layers with the
ADAM optimization algorithm [19]. The last layer consists of
a fully connected layer, where the number of units is equal
to the number of classes, followed by a softmax function in
order to obtain normalized probability values. Parameters of
the softmax classification layer are estimated with the ASMLR
[15] algorithm.

B. Approximate Sparse Multinomial Logistic Regression

ASMLR [15] is a probabilistic classifier which models the
pixels as a mixture of multinomial logistic regression models
and takes advantage of pixel neighborhoods. In this model a
pixel vector sn for n = 1, 2, ..., N is assumed to be generated
by one of K multinomial distributions where N is the number
of pixels and K is the number of classes.

1) Model:

p(sn|zn,k = 1,ω1:K) =
eω

T
k sn∑K

j=1 e
ωT

j sn
(1)

where ωk is the regression coefficient vector of the kth class.
By defining the label vector zn ∈ {0, 1}K with the property
that

∑K
k=1 zn,k = 1, we can write (1) as follows:

p(sn|zn,ω1:K) =
K∏
k=1

(
eω

T
k sn∑K

j=1 e
ωT

j sn

)zn,k

(2)

We can write the joint density of sn and zn for all pixels as
follows:

p(s1:N , z1:N |ω1:K , β) =[
N∏
n=1

K∏
k=1

p(sn|ωk)zn,k

]
p(z1:N |β) (3)

We obtain the sparse regression coefficients by placing Laplace
priors over the coefficients:

p(ω1:K |λ) =
K∏
k=1

λ

2
e−λ||ωk||1 (4)

where ||ωk||1 =
∑L
l=1 |ωk,l| is the l1 norm.

2) Parameter Estimation: We use the maximum a-
posteriori estimate of the regression coefficients ωk. For this
purpose, we can write the log-posterior as follows:

L(ω) =
N∑
n=1

 K∑
k=1

zn,kω
T
k sn − log

K∑
j=1

exp(ωTj sn)


−λ

K∑
k=1

||ωk||1 (5)
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where ω = [ωT1 , ...,ω
T
K ]T . The second order Taylor series

expansion of L(ω) around ω(t) can be written as follows:

L(ω)− L(ω(t)) = (ω − ω(t))TgL(ω(t)) (6)

+
1

2
(ω − ω(t))THL(ω(t))(ω − ω(t))

where HL(ω(t)) is the Hessian matrix and gL(ω(t)) is the
gradient vector. Hessian can be written as the sum of the
Hessian matrices obtained from the log-likelihood and the log-
prior as follows:

HL(ω(t)) = Hl(ω
(t)) + λΛ(ω(t)) (7)

By maximizing (7), we can write the following:

ω(t+1) = ω(t) − (Hl(ω
(t)) + λΛ(ω(t)))−1gL(ω(t)) (8)

which is the update rule from the Newton’s method for
optimization. In [20] it was shown that Hessian from the log-
likelihood is lower bounded with a constant as follows:

HL(ω) = Hl(ω) + λΛ(ω) ≥ B + λΛ(ω) (9)

With this lower bound the update rule can be written as
follows:

ω(t+1) = ω(t) − (B + λΛ(ω(t)))−1gL(ω(t)) (10)

Equation (10) can be calculated component-wise as in coordi-
nate descent algorithm in order to avoid large matrix inversion:

ω
(t+1)
k = ω

(t)
k −

[
Bkk + λΛ(ω

(t)
k )
]−1 [

gk(ω
(t)
k )

+
1

2

∑
j 6=k

(Bkj + λΛ(ω
(t)
j )ej

+λsign(ω
(t)
k )
]

(11)

where ej = ω
(t)
j − ω

(t−1)
j .

Each block of the lower bound matrix B can be calculated
as follows:

Bkj = −1

2
(δkj − 1/K)STS (12)

where S = [s1, s2, ..., sN ]T , and δkj is the Kronecker delta
function. The gradient with respect to ωk can be calculated
as follows:

gk(ω
(t)
k ) =

N∑
n=1

(zn,k − πn,k)sn (13)

where

πn,k =
eω

T
k sn∑K

j=1 e
ωT

j sn
(14)

In (11) Λ function can be written as follows:

Λ(ωk) = diag{|ωk,1|−1, |ωk,2|−1, ..., |ωk,L|−1} (15)

which was proposed in [21].

3) Spatial Smoothing: In (3) the prior over the class labels
can be written as follows which was first proposed in [22] and
[23]:

p(z1:N |β) = (16)∏K
k=1 exp{β

∑N
n=1 zn,k

(
1 + 1

2

∑
m∈ñ zm,k

)
}

Z(β)

where Z(β) is the normalization term, ñ is the set of pixels
around the nth pixel, and β is the smoothing parameter.
Smoothing is performed by maximizing the posterior dis-
tribution of pixel labels by using iterated conditional mode
(ICM) algorithm [24]. Conditional of zn can be maximized as
follows:

p(zn|zn̄, sB , ω̂1:K , β) ∝ p(sn|zn, ω̂1:K)p(zn|zñ, β)

=
K∏
k=1

[
eω̂

T
k sn∑K

j=1 e
ω̂T

j sn

eβvn,k∑K
j=1 e

βvn,j

]zn,k

(17)

where n̄ = {1, 2, ..., N} \ {n}, vn,k = 1 +
∑
m∈ñ zm,k, B is

the set of test pixel indices, and ω̂k is the estimated regression
parameter vector of the kth class.

III. EXPERIMENTAL RESULTS

In order to evaluate the classification performance of the
proposed method we performed tests with two hyperspectral
images, namely Indian Pines and Pavia University.

Indian Pines image consists of 145×145 pixels, 16 classes,
and 220 spectral bands. In experiments, we removed 20 noisy
bands and used the remaining 200 bands. Pavia University
image consists of 610×340 pixels, 9 classes and 103 spectral
bands. In Fig. 1, the ground truth images of Indian Pines and
Pavia University are given alongside color-bars showing the
class numbers.
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Fig. 1. Ground truth images of (a) Indian Pines and (b) Pavia University
datasets.

We have run the tests 20 times and report the average
accuracy along with standard deviation. For each run, for the
Indian Pines image, training set is constructed by randomly
selecting 50 pixels from each class, and the remaining pixels
are used as the test samples. If half of the number of pixels in a
class is smaller than 50, half of the pixels are used for training
and the other half is used for tests. The same procedure is
applied to the Pavia University image except that we select
100 pixels from each class for training. The number of training
and test pixels for Indian Pines and Pavia University are given
in Table I and II, respectively.
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TABLE I
INDIAN PINES CLASSES WITH NUMBER OF TRAINING AND TEST SAMPLES

Class Name Training Test
1 Alfalfa 23 23
2 Corn-notill 50 1378
3 Corn-mintill 50 780
4 Corn 50 187
5 Grass-pasture 50 433
6 Grass-trees 50 680
7 Grass-pasture-mowed 14 14
8 Hay-windrowed 50 428
9 Oats 10 10

10 Soybean-notill 50 922
11 Soybean-mintill 50 2405
12 Soybean-clean 50 543
13 Wheat 50 155
14 Woods 50 1215
15 Buildings-Grass-Trees-Drives 50 336
16 Stone-Steel-Towers 46 47

Total 693 9556

TABLE II
PAVIA UNIVERSITY CLASSES WITH NUMBER OF TRAINING AND TEST

SAMPLES

Class Name Training Test
1 Asphalt 100 6531
2 Meadows 100 18549
3 Gravel 100 1999
4 Trees 100 2964
5 Painted metal sheets 100 1245
6 Bare Soil 100 4929
7 Bitumen 100 1230
8 Self-Blocking Bricks 100 3582
9 Shadows 100 847

Total 900 41876

As a preprocessing step, from the training data we subtract
the mean and divide all the samples by the standard deviation.
Using the mean and the standard deviation of the training set,
we apply the same transformation to the test set as well.

For the Indian Pines image, we use a network with three 1-
D convolution layers with number of filters 10, 10, and 5, and
with kernel sizes 5, 3, and 5 in consecutive order. Each layer
consists of a convolution operator, batch normalization, ReLU,
and a max pooling operator with stride 2 and kernel size 2.
The resultant feature length is 110. Number of iterations for
training ASMLR is 50, and similarly, number of epochs for
training CNN and CNN+ASMLR is also 50.

For the Pavia University image, we use 10, 10, and 15
convolutional filters consecutively. Since the spectral vector
length is 103, we use a zero padding operation in the first layer
before the max pooling layer, in order to make it divisible by
2. Other parameters are the same, and the resultant feature
length is 150. Number of iterations used for training ASMLR
is 100, and similarly, number of epochs to train CNN and
CNN+ASMLR algoritms is also 100.

The number of filters, kernel sizes, and layers were decided
by experiments for both networks. Pooling layers limit the
depth of the network since the spectral dimension becomes

smaller in each layer, therefore 3 layers were considered as
optimum.

For comparison, we also use a support vector machine
(SVM) which is combined with the same spatial smooth-
ing algorithm. Although support vector machine is not a
probabilistic classifier, we use Platt scaling [25] to get class
probabilities, therefore it can be combined with the spatial
smoothing algorithm.

The test results of Indian Pines and Pavia University images
are given in Table III and Table IV, respectively.

TABLE III
INDIAN PINES TEST RESULTS

Evaluation Methods
Metrics ASMLR CNN CNN+ASMLR SVM

Accuracy 0.84 0.83 0.89 0.78
Standard deviation 0.03 0.06 0.03 0.03

TABLE IV
PAVIA UNIVERSITY TEST RESULTS

Evaluation Methods
Metrics ASMLR CNN CNN+ASMLR SVM

Accuracy 0.92 0.87 0.93 0.76
Standard deviation 0.02 0.11 0.05 0.02

From Table III and Table IV it can be seen that the proposed
method gives better results than the other methods. The differ-
ence between the results obtained by CNN and CNN+ASMLR
shows that the proposed procedure significantly improves the
classification performance of CNNs.

Classification map examples of the Indian Pines image are
given in Fig. 2.

(a) (b)

(c) (d)

Fig. 2. Classification maps of Indian Pines image obtained by (a) ASMLR,
(b) CNN, (c) CNN+ASMLR, and (d) SVM.

Classification map examples of the Pavia University image
are given in Fig. 3.
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(a) (b)

(c) (d)

Fig. 3. Classification maps of Pavia University image obtained by (a)
ASMLR, (b) CNN, (c) CNN+ASMLR, and (d) SVM.

IV. CONCLUSION

Experimental results have shown that the proposed train-
ing method is advantageous in terms of classification accu-
racy. This method combines the feature extraction capabili-
ties of convolutional layers and classification performance of
ASMLR. As can be seen from the reported test results, the
combination of convolutional representation learning, sparsity
based feature selection, and spatial smoothing improve the
classification accuracy even when trained on a relatively small
training set. The proposed procedure with ASMLR training
can be applied to CNNs with different architectures and it
allows to train CNNs with a smaller number of training
iterations.

Future work will include a more detailed comparison of
different network structures, performance evaluation with dif-
ferent training strategies, and modifications for minibatch
training.
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