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Abstract—This paper deals with nonlinear matrix completion
problem, which is a problem of restoring missing entries in
a given matrix, where its column vectors belong to a low
dimensional manifold. Assuming that a low dimensional manifold
can be approximated locally as a low dimensional linear subspace,
this paper proposes a new locally low-rank approach. In this
approach iteratively solves low-rank matrix completion problems
for submatrices generated by using the k-means clustering for
several values of k and restores missing entries. Numerical
examples show that the proposed algorithm achieves better
performance than other algorithms.

Index Terms—matrix completion, matrix rank minimization,
nuclear norm minimization, compressed sensing

I. INTRODUCTION

This paper deals with matrix completion problem, which
is a problem of restoring missing entries in a given matrix.
Matrix completion problem has various applications in the
field of signal processing such as a image impaitng, signal
restoration, collaborative filtering, parameter estimation of lin-
ear system [1] and restoration of input and output signals [2].
Several methods of estimating missing entries have been
studied, and most of them solve matrix completion problems
by assuming that column or row vectors of a matrix belong to
a low dimensional linear space and formulating them as matrix
rank minimization problems [3]–[5]. To achieve high recovery
performance, some algorithms assume that column vectors
belong to multiple low dimensional linear subspaces. Based
on this assumption, an algorithm using subspace clustering
has been proposed in [6], and an algebraic variety approach
has been proposed in [7]. However, observed signals in real
applications do not always belong to linear subspaces, and
restoration accuracy sometimes becomes worse for these ap-
plications.

To achieve higher recovery performance for real applica-
tions, this paper deals with a nonlinear matrix completion
problem where column vectors of a matrix are assumed to
belong to a low dimensional manifold. Based on the assump-
tion that a low dimensional manifold can be approximated
locally as a low dimensional linear subspace, the authors
have already proposed a locally low-rank approach to this
problem in [8]. This approach iteratively solves low-rank

matrix completion problems for submatrices consisting of
neighbor column vectors of the matrix and achieves higher
recovery performance. However, it takes a lot of comput-
ing time to restore missing entries because submatrices are
generated for all column vectors using their neighbors and
because each matrix completion problem is solved repeatedly
until converge. To provide a faster algorithm based on the
locally low-rank approach, this paper introduces the k-means
clustering and proposes a new algorithm which solves low-
rank matrix completion problems for submatrices generated by
using the k-means clustering for several values of k. Numerical
examples show that the proposed algorithm solves nonlinear
matrix completion problems better than a standard low-rank
approach and takes less computing time than the locally low-
rank approach.

II. MATRIX COMPLETION AND LOW-RANK APPROACH

This section gives a standard linear matrix completion
problem and a low-rank approach proposed in [5].

The matrix completion problem is a problem of estimating
that missing entries of a matrix X ∈ RM×N . We usually
assume that its column or row vectors belong to a low
dimensional linear subspace, that is, X is a low-rank matrix,
and the problem is formulated as the following matrix rank
minimization problem,

Minimize rank(X)
subject to PΩ(X) = PΩ(Xtrue)

, (1)

where Ω denotes given index set, PΩ : RM×N → RM×N

denotes a linear operator that projects all entries except
subscripts included in the set Ω to 0, and Xtrue denotes
a true matrix to be recovered. Although this problem is
generally NP-hard, several algorithms have been proposed
to obtain an approximate solution. This paper introduces a
truncated nuclear norm minimization approach, which relaxes
the objective function of (1) by the truncated nuclear norm of
X as follows,

Minimize ∥X∥∗,r
subject to PΩ(X) = PΩ(Xtrue)

, (2)
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where ∥X∥∗,r denotes the truncated nuclear norm defined by

∥X∥∗,r =
M∑

i=r+1

σi, (3)

with respect to the ith greatest singular value σi of X. This
problem can be solved by iterative partial matrix shrinkage
algorithm (IPMS) [5], which iterates the following update
schemes until converge,

Step 1 Z ← Tr,λ (X)
Step 2 X ← PΩc(Z) + PΩ(Xtrue)

where Tr,λ (X) denotes a partial soft thresholding operator,
which shrinks ith greatest singular values by λ, that is, replaces
σi by max(0, σi−λ) for i = r+1, r+2, . . . ,M . If r = 0, (2)
is equal to a standard nuclear norm relaxation problem, and the
above scheme corresponds with a soft shrinkage algorithm. If
the rank of Xtrue is unknown, this update scheme achieves the
best performance by letting r = rank(Xtrue). However it is
usually unknown, the IPMS algorithm updates r by estimating
the rank as follows,

r ← argmax
i

σi subject to σi ≥ ασ1,

where α ∈ (0, 1) is a given constant. The details are written
in [5]. Though this paper uses the IPMS algorithm for locally
low-rank approaches due to its recovery performance, any low-
rank approaches can be applied.

III. NONLINEAR MATRIX COMPLETION AND LOCALLY
LOW-RANK APPROACH

This section introduces nonlinear matrix completion prob-
lems and a locally low-rank approach, which is originally
proposed in [8] and modified to simplify notations.

In this paper, we focus on the following nonlinear matrix
completion problem,

Minimize rank ([ϕ(x1) ϕ(x2) . . . ϕ(xN )])
subject to PΩ(X) = PΩ(Xtrue)

(4)

where xi denotes the ith column vector of matrix X , and
ϕ : Rn → Rp denotes a nonlinear mapping. If ϕ is known and
has its inverse function after converting xi to ϕ(xi), it can be
solved as a matrix rank minimization problem. However, in
real applications, ϕ is not always known, and this paper deals
with the unknown case.

We assume here that ϕ(x1), . . . , ϕ(xN ) belong to a low
dimensional manifold which can be approximate locally as a
low dimensional linear subspace, and consider a local matrix
completion problem as follows,

Minimize
N∑
i=1

∥XD(i)∥∗,r

subject to PΩ(X) = PΩ(Xtrue)

, (5)

where D(i) ∈ RN×N denotes diagonal matrix whose jth

Algorithm 1 Locally low-rank algorithm.

Input: X(0),m, δ, αmin, ηα, ϵ, tmax

1: X ← X(0) ; t← 0 ; α← 1
2: repeat
3: t← t+ 1
4: Xold ← X
5: α← max(α/ηα, αmin)
6: Set D to be N ×N zero matrix
7: for i = 1 to N do
8: for j = 1 to N do
9: if xj is m nearest column vector of xi then

10: D
(i)
jj ← 1

11: else
12: D

(i)
jj ← 0

13: end if
14: end for
15: [U, σ1, σ2, · · · , σM , V ]← SVD(XD(i))
16: r̂ ← argmin

r
σr s.t. σr ≥ ασ1

17: λ← δσr̂

18: Z(i) ← Tr̂,λ(XD(i))
19: Y ← D(i)Z(i) +X(I −D(i))
20: X ← PΩc(Y ) + PΩ(X

(0))
21: end for
22: until ∥X −Xold∥F /∥X∥F < ϵ or tmax < t
Output: X

diagonal element D(i)
jj is defined by

D
(i)
jj =

 1 if j = i
1 if xj is the m-nearest neighbor of xi

0 otherwise
.

The nearest neighbor is provided w.r.t. Euclidean distance, and
m is a given constant. In order to provide an update scheme,
(5) is relaxed as follows,

Minimize
N∑
i=1

1
2∥XD(i) − Z(i)∥2F + λ∥Z(i)∥∗,r

subject to PΩ(X) = PΩ(Xtrue)

. (6)

Then the following update scheme is provided to obtain a
solution of the above problem, where I denote the identity
matrix,

Step 1.Z(i) ← Tr,λ
(
XD(i)

)
.

Step 2.Y ← D(i)Z(i) +X(I −D(i)).
Step 3.X ← PΩc(Y ) + PΩ(Xtrue).

Based on the above update scheme and the IPMS algorithm,
the locally low-rank algorithm is obtained as shown in Algo-
rithm 1, where X is partially shrunk according to submatrix
complete problems (6) after constructing D(i). This algorithm
requires N singular value decompositions (SVDs) in one
iteration and requires significant computing time.

IV. MULTIPLE k-MEANS CLUSTERING BASED ALGORITHM

Because the locally low-rank algorithm solves submatrix
completion problems (6) for neighbor column vectors of all
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Fig. 1. k submatrix completion problmes of k clusters. Black dots and edges
denote xj and their neighbor connectivity.

xi, it takes high computing cost. To reduce the number of
submatrix completion problems, this paper proposes a new
algorithm as illustrated in Fig.1, which applies the k-means
clustering method to xi w.r.t. Euclidean distance and gives
k submatrix completion problems of k clusters. We define
diagonal matrix D(i) whose jth diagonal entries D

(i)
jj is

defined by

D
(i)
jj =

{
1 if xj is a member of the ith clustering
0 otherwise

and then consider a relaxed submatrix complete problem as
follows,

Minimize
k∑

i=1

1
2∥XD(i) − Z(i)∥2F + λ∥Z(i)∥∗,r

subject to PΩ(X) = PΩ(Xtrue)

. (7)

However, this algorithm corresponds with a low-rank approach
based on the assumption that column vectors belong to mul-
tiple low dimensional linear subspaces, that is, a manifold is
approximated by piece-wise linear subspaces, and the recovery
accuracy decreases. To achieve high recovery accuracy, this
paper proposes multiple k-means clustering based algorithm
as illustrated in Fig.2, which uses k-means clustering for
k ∈ {k1, k2, . . . , kK}, where ki denotes the number of
members in the ith cluster. Let us define diagonal matrix D(l,i)

whose jth diagonal entries D
(l,i)
jj is defined by

D
(l,i)
jj =

 1 if xj is a member of the ith cluster
of the lth clustring (k = kl)

0 otherwise

and then consider a relaxed submatrix complete problem as
follows,

Minimize
K∑
l=1

kl∑
i=1

1
2∥XD(l,i) − Z(l,i)∥2F + λ∥Z(l,i)∥∗,r

subject to PΩ(X) = PΩ(Xtrue)

.

(8)
A solution of this problem is obtained by the same up-
date scheme for (6) replacing D(i) with D(l,i). Finally this
paper proposes a multiple k-means clustering based locally
low-rank algorithm as shown in Algorithm 2, where X is
partially shrunk according to submatrix complete problems
(8) after applying kl-means clustering for l ∈ {1, 2, . . . ,K}
and constructing {D(l,i)}Kl=1. This algorithm requires

∑K
i=1 ki

T�, λ T�, λT�, λ

Fig. 2. A multiple k-means clustering based locally low-rank algorithm.

Algorithm 2 Multiple k-means clustering based locally low-
rank algorithm.

Input: X(0), {kl}Kl=1, δ, αmin, ηα, ϵ, tmax

1: X ← X(0) ; ← 0 ; α← 1
2: repeat
3: t← t+ 1
4: Xold ← X
5: α← max(α/ηα, αmin)
6: for l = 1 to K do
7: Apply the kl-means clustering to {xi}Ni=1, obtain kl

clusters, and construct D(l,i).
8: for i = 1 to kl do
9: [U, σ1, σ2, · · · , σM , V ]← SVD(XD(l,i))

10: r̂ ← argmin
r

σr s.t. σr ≥ ασ1

11: λ← δσr̂

12: Z(l,i) ← Tr̂,λ(XD(l,i))
13: Y ← Z(l,i)D(l,i) +X(I −D(l,i))
14: X ← PΩc(Y ) + PΩ(X

(0))
15: end for
16: end for
17: until ∥X −Xold∥F /∥X∥F < ϵ or tmax < t
Output: X

singular value decompositions (SVDs) in one iteration.

V. NUMERICAL EXAMPLES

This section presents numerical examples to show the
efficiency of the proposed multiple k-means clustering based
locally low-rank algorithm (Algorithm 2) comparing with the
IPMS algorithm, the locally low-rank algorithm (Algorithm
1) and the variety-based matrix completion algorithm (VMC)
[7]. In all examples, X restored by the IPMS algorithm
was utilized as the initial value X(0) in Algorithm 1 and
Algorithm 2, and we use the parameters in Algorithm 1 and
Algorithm 2 as δ = 0.01, αmin = 1.0 × 10−4, ηα = 1.0093,
ϵ = 1.0 × 10−2 and tmax = 1000, which achieve the best
performance.

First, the IPMS algorithm, the VMC algorithm, Algorithm
1 and Algorithm 2 were compared using the nonlinear matrix
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TABLE I
COMPARISON OF SNR [DB].

f(x) (9) (10) (11)
IPMS 25.540 20.523 24.035

VMC(d = 2) 42.267 41.354 38.634
VMC(d = 3) 42.793 38.564 43.132
Algorithm 1 55.714 46.938 47.365
Algorithm 2 46.532 42.385 42.622

completion problem (4) with ϕ defined by

ϕ(x) = [f(x1) f(x2) . . . f(xn)]
T .

We examined three kinds of f as follows,

f(x) = 0.467x+ 0.0472x2 + 0.4727x3 + 0.2148x4

+0.1977x5 − 0.2839x6 + 0.4763x7, (9)
f(x) = sin2πx, (10)

f(x) = sgn(x)
|x|

0.1 + |x|
, (11)

where
sgn(x) =

{
1 if x ≥ 0
−1 if x < 0

.

We generated 50 × 5000 rank-2 matrix Xlin, obtain X by
converting each column vector of Xlin using f and applied
three algorithms under the condition that randomly selected
30% of entries in X are known. In Algorithm 2, we use K = 3
and (k1, k2, k3) = (20, 30, 40). Table I and II show the results
of the average of 10 trials. The relative error is evaluated by
SNR[dB] calculated as

SNR = −20 log10 ∥Xrestore −Xtrue∥F /∥Xtrue∥F ,

where Xrestore is a matrix restored by the algorithms, and
Xtrue is a matrix with complete entries. As can be seen,
the IPMS algorithm has much worse performance than Algo-
rithm 1 and Algorithm 2 since it restores a matrix assuming
that column vectors belong to a linear subspace. We can
see that the proposed algorithm is about 20 times faster and
has almost the same recovery performance comparing with
Algorithm 1.

Next, Algorithm 2 was applied to a signal restoration
problem with a subspace clustering in oder to show its
practical performance in the field of subspace clustering. This
paper converted subspace signal restoration problems with
a subspace clustering into matrix completion problems by
generating N×M data matrices whose columns vector belong
to s linear subspaces of dimension 2. We examined algorithms
for (N,M, s) = (50, 100, 5) and (100, 200, 10) and used
K = 3 and (k1, k2, k3) = (10, 20, 30). Table III show the
results of the average of 5 trials. As can be seen, the VMC
algorithm has much worse performance than Algorithm 1 and
Algorithm 2.

TABLE II
COMPARISON OF COMPUTING TIME [SEC].

f(x) (9) (10) (11)
VMC(d = 2) 11594.7 10578.7 11482.5
VMC(d = 3) 11597.2 10741.4 11596.3
Algorithm 1 2177.1 2018.3 2162.2
Algorithm 2 94.3 89.9 92.1

VI. CONCLUSION

This paper deals with nonlinear matrix completion problem,
which is a problem of restoring missing entries in a given
matrix, where its column vectors belong to a low dimensional
manifold. Although the locally low-rank algorithm has a good
recovery performance for this problem, it requires a lot of com-
puting time. To reduce computational cost, this paper proposes
a new locally low-rank approach, which iteratively solves low-
rank submatrix completion problems generated by using the k-
means clustering for several values of k. Numerical examples
show that the proposed algorithm is about 20 times faster and
has almost the same recovery performance comparing with the
original locally low-rank algorithm. An example of application
to image inpaiting also shows its practical performance in the
field of image processing. Because the convergence of the
proposed algorithm is not guaranteed, further analysis of the
algorithm would be required.
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TABLE III
COMPARISON OF SNR WITH SIGNAL RESTORATION PROBLEM WITH SUBSPACE CLUSTERING [DB].

Problem Algorithm
N M s IPMS VMC(d = 2) VMC(d = 3) Algorithm 2
50 100 5 17.32 28.81 12.70 31.96

100 200 10 26.68 33.58 10.42 48.78
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Fig. 3. 3D projection of column vectors (a) with missing entries, (b) with
complete entries, (c) restored by the nuclear norm minimization, (d) restored
by the proposed algorithm in equation (9).
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Fig. 4. 3D projection of column vectors (a) with missing entries, (b) with
complete entries, (c) restored by the nuclear norm minimization, (d) restored
by the proposed algorithm in equation (10).
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Fig. 5. 3D projection of column vectors (a) with missing entries, (b) with
complete entries, (c) restored by the nuclear norm minimization, (d) restored
by the proposed algorithm in equation (11).
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