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Abstract—Video codec heavily relies on motion compensated
prediction to achieve compression efficiency. The predictive
scheme creates temporal dependency across frames, i.e., the
quantization distortion in a current block may propagate through
motion compensated prediction and affect the coding efficiency
of blocks in subsequent frames. The ability to capture such
dependency can potentially improve the rate-distortion optimiza-
tion for coding performance gains. Prior research work builds
block-based motion trajectories and uses the correlations between
source pixel blocks in the same motion trajectory to estimate the
distortion propagation model. This work premises on the real-
ization that the distortion propagation is also largely related to
the quantization effect. A novel temporal dependency model that
accounts for both block correlation and the quantization effect
is proposed. It is experimentally shown to provide considerable
compression gains over the existing competitors.

Index Terms—motion compensated prediction, rate-distortion
optimization, temporal dependency, video compression

I. INTRODUCTION

Video compression techniques exploit the temporal cor-
relations in video signal, most commonly in the form of
motion compensated prediction, to achieve superior coding
efficiency. Such predictive coding scheme creates dependency
between a current coding block and its reference block. The
reconstruction quality of one block can potentially influence
the compression efficiency of blocks in the subsequent frames.
Intuitively if a reference block predicts a current block well,
shifting the bit allocation to improve the reference block
reconstruction quality would reduce the overall distortion
under the same rate cost. Whereas if the two blocks are less
relevant, spending the bits according to their individual needs
would make better rate-quality trade off.

A typical rate allocation approach to optimizing the per-
formance of hierarchical coding structure is to use lower
quantization parameters (QP) for frames at lower temporal
layer, which serve as the reference frames for later higher
temporal layer frames [1]. A trellis-based rate allocation
optimization is proposed in [2], where each node corresponds
to a frame encode at a given QP. The scheme finds the
path that minimizes the overall rate-distortion cost as the
optimal frame QP combinations for the entire sequence. To
achieve optimality for frame level QP selection, the encoding
complexity increases significantly.

Recent work [3] [4] exploits inter frame dependency to
optimize the rate allocation. A linear model is proposed in

[3] to capture the frame level distortion propagation, whose
parameters are trained offline. In [4] the inter frame depen-
dency model is updated according to the coding statistics
from previously coded frames at the same temporal layer.
Both adapt the frame QP according to the derived depen-
dency models. A block based temporal dependency model
is proposed in [5] [6]. It conducts forward search over next
coding frames to measure the impact of the reconstruction
distortion of a current block, based on which the Lagrangian
multiplier of each coding tree unit in a current frame will be
adjusted [7]. Certain simplifications, including relaxing motion
trajectory on-grid alignment constraint (a coding block must
be on grid whereas its reference block does not) and assuming
all inter-mode coded blocks (ignoring the possible use of intra
prediction), are employed to build the model so as to make
the whole process complete in a single pass encoding.

A macroblock-tree (MB-tree) scheme [8] is implemented in
the x264/5 codec that tracks the temporal dependency through
block level motion trajectories. It uses a two-pass encoding
approach. The first pass runs with ordinary rate-distortion
optimization based mode decision without accounting for the
distortion impact on the subsequent frames. The second pass
first utilizes the motion vectors and inter/intra mode decisions
available from the first pass to build motion trajectories over
the source frames (i.e., uncompressed frames). To estimate
each block’s impact on the subsequent blocks in the same
motion trajectory, the MB-tree scheme uses a linear model of
the intra- and inter-prediction errors. The correlation between
the two blocks is estimated by the difference error divided by
the intra-prediction error. The correlations are then recursively
propagated through the motion trajectories, which form a
temporal dependency model. Based on that the encoder adjusts
the rate allocation to improve reconstruction quality of blocks
that have higher impact on their subsequent blocks in the
motion trajectories. It has been shown that the MB-tree sys-
tem provides significant compression gains over conventional
frame type dependent constant quantization parameter coding
scheme.

This work builds on the realization that the MB-tree largely
ignores the quantization effect on the temporal dependency
by building its model based on the inter- and intra-prediction
errors over the source signals, whereas the true distortion
propagation depends on the relative energy value between the
innovation term and the quantization error. In high resolution
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quantization case, the latter is substantially smaller than the
innovation, hence the distortion propagation between frames
is minimal. When the quantization error is comparable or
exceeds the innovation term (a fairly common situation in
medium bit-rate range), the distortion propagation is largely
determined by the correlation between blocks in the same
motion trajectory. Hence we propose a new temporal depen-
dency model approach that extends the MB-tree scheme to
account for the quantization effect on the distortion propaga-
tion through the motion trajectory. It is experimentally shown
that the proposed scheme provides considerable compression
efficiency improvement on top of the MB-tree scheme.

II. THE MACROBLOCK-TREE SCHEME

We provide a brief description of the MB-tree system
initially proposed in [8] for H.264. Similar design principle
can be easily applied to later generation codecs like H.265
and VP9. The MB-tree estimates the amount of information
each MB contributes to the prediction of future frames, which
is used to weight the rate-distortion trade-off for each MB
based on its contribution. The scheme works in the reverse
frame processing order over the source frames, propagating
information from future frames back to the current frame.

For each frame, a propagation step is run for each MB. it
operates as follows:

1) Estimate the intra prediction cost in terms of sum of
absolute Hadamard transform difference (SATD) noted
as intra cost. It also loads the motion information
available from the first-pass encode and estimates the
inter prediction cost as inter cost. Since modern codecs
- H.264/5, VP8/9 - all use hybrid inter/intra prediction
mode, the inter cost value is further upper bounded
by intra cost. A propagation cost variable is used
to collect all the information flowed back from future
processing frames. It is initialized as 0 for all the MBs in
the last processing frame in a group of pictures (GOP).

2) The fraction of information from a current MB to be
propagated towards its reference block is estimated as

progation fraction = (1− inter cost/intra cost).
(1)

It reflects how much the motion compensated reference
would reduce the prediction error in percentage.

3) The total amount of information the current MB con-
tributes to the GOP is estimated as intra cost +
propagation cost. The information that it propagates
towards its reference block is captured by

propagation amount =

(intra cost+ propagation cost)∗
propagation fraction.

4) Note that the reference block may not necessarily sit
on the grid of MBs. The propagation amount is
dispensed to all the MBs that overlap with the reference
block. The corresponding MB in the reference frame

accumulates its own propagation cost as it receives
back propagation:

propagation cost+ =

(overlap area/MB area)∗
propagation amount.

Similar information dispense approach has been used in
[9] as well.

In the final encoding stage, the distortion propagation factor
of a MB is evaluated as (1+propagation cost/intra cost),
where the second term captures its impact on later frames
in a GOP. The rate allocation is hence adjusted according
to the distortion model such that MBs with higher distortion
propagation factor get higher rate allocation and vice versa.

III. THE PROPOSED TEMPORAL DEPENDENCY MODEL

This work re-designs the distortion propagation model in
MB-tree to account for the quantization effect. Consider the
second moment of inter prediction error:

σ2
k = E{||Mk − M̂k−1||2}, (2)

where k represents frame index, Mk is the source pixel block
and M̂k−1 is the reconstructed reference block. Assume the
innovation term between Mk and Mk−1 is largely uncorrelated
with the quantization noise at M̂k−1 [5], we have

σ2
k = E{||Mk −Mk−1 +Mk−1 − M̂k−1||2}
≈ E{||Mk −Mk−1||2}+ E{||Mk−1 − M̂k−1||2}
= σ2

o +Dk−1,

where the prediction error σ2
k is approximately decomposed

into the innovation term σ2
0 and the quantization distortion in

the reference block Dk−1.
Under high resolution quantization assumption, it is known

that the expected quantization distortion is linear with the input
signal energy [10] [11]:

Dk = α(σ2
o +Dk−1), (3)

where α is decided by the bit-rate and the probability distri-
bution of the input signal. The relationship largely holds in
other bit-rate range too. The α value is empirically assumed
to be 0.94 in [5] and 1.0 in [8]. Instead this work proposes to
directly estimate the effective linear relationship α per block.

When building the temporal dependency model, the encode
has the access to the source blocks Mk and Mk−1, and their
difference

Rk =Mk −Mk−1. (4)

We apply Hadamard transform (this can be replaced with Dis-
crete Cosine Transform for slightly better overall compression
performance) to Rk and quantize the transform coefficients to
obtain its quantized version:

R̂k = T−1Q(T (Rk)). (5)
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The Hadamard transform approximates the Discrete Cosine
Transform and has simple and fast implementation to re-
duce the encoder complexity increase. This step allows us
to account the transform coding gains for evaluating the
quantization noise. The distortion on the innovation term can
be estimated by:

Dk0 ≈ E{||Rk − R̂k||2} (6)

and the prediction error as:

σ2
o = E{||Rk||2}. (7)

In typical encoding settings, a frame usually has larger or
similar QP as compared to its reference frames, which implies
Dk ≥ Dk−1. Furthermore we assume the quantization noise
is bounded by the innovation term, i.e., σ2

o ≥ Dk. Hence we
assume that σ2

o ≥ Dk−1 in (3). The quantization effect on the
innovation term largely captures the linear relationship in (3):

α ≈ Dk0

σ2
o

. (8)

Therefore the distortion in the reference block M̂k−1 con-
tributes approximately

αDk−1 =
Dk0

σ2
o

Dk−1 (9)

to block Mk. Accordingly the distortion propagation model in
(1) is re-designed as:

propagation fraction =
Dk0

σ2
o

· (1− inter cost

intra cost
), (10)

where the first term captures the quantization effect and
the second term reflects the mutual information between the
reference and the current blocks.

Clearly when the quantization noise is significantly smaller
than the innovation energy, the inter frame distortion propa-
gation is close to 0, which translates into the fact that there is
no need to account for the distortion impact on future frames
when conducting the rate-distortion optimization for a current
frame coding. When the quantization noise is comparable
to the innovation process, the impact of a current block
on subsequent blocks in the motion trajectory depends on
their correlations. Here we quantify the correlations as the
percentage of intra prediction error reduction due to inter
prediction.

The proposed temporal dependency model is hence built as
such:

1) Gather the intra cost, inter cost, and
propagation cost as discussed in Section II.

2) Apply Hadamard transform (or Discrete Cosine Trans-
form) to the inter prediction residuals, followed by the
quantization process. Obtain the prediction error σ2

o and
quantization error Dk0 respectively.

3) The fraction of information from a current block to be
propagated towards its reference block is estimated as

propagation fraction =
Dk0

σ2
o

· (1− inter cost

intra cost
).

(11)

4) The total amount of information the current block
contributes to the GOP is estimated as intra cost +
propagation cost. The information that it propagates
towards its reference block is captured by

propagation amount =

(intra cost+ propagation cost)∗
propagation fraction.

5) The propagation amount is dispensed to all the blocks
that overlap with the reference block. The correspond-
ing block in the reference frame accumulates its own
propagation cost as it receives back propagation:

propagation cost+ =

(overlap area/block area)∗
propagation amount.

The distortion propagation factor of a block is evaluated
by (1 + propagation cost/intra cost). Same rate-distortion
optimization trade-off as Section II applies here.

IV. EXPERIMENTAL RESULTS

We implemented both MB-tree and the proposed distortion
propagation model in the VP9 codec. The source code can be
found at [12]. The baseline framework uses two-pass encoding,
where the first pass gathers inter frame statistics to optimize
the frame level rate control in the second pass. To validate
the efficacy of the proposed approach, we used the distortion
propagation model, described in Section II for MB-tree and
Section III for temporal dependency model, to adapt the
Lagrangian multiplier at 64x64 coding block level.

For every 64x64 block in a frame, we have their distortion
propagation factor:

dist prop[i] = 1 +
propagation cost[i]

intra cost[i]
, (12)

where i denotes the block index in the frame. We also have
the frame level distortion propagation factor:

dist prop = 1 +

∑
i propagation cost[i]∑

i intra cost[i]
. (13)

We used (13) to normalize the block distortion propagation
factor in (12) and adapted the Lagrangian multiplier at 64x64
block level as:

λ[i] = λ0 ∗
dist prop

dist prop[i]
, (14)

where λ0 is the multiplier associated with frame level QP.
Hence a block with higher relative distortion propagation fac-
tor would have a smaller Lagrangian multiplier, which biases
the rate-distortion optimization to reduce the reconstruction
distortion. Note that there are more complex and advanced al-
gorithms to optimize the rate allocation based on the temporal
dependency information. We use the above described simple
approach to validate the efficacy of the proposed temporal
dependency model referred to as TPL hereafter.
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The encoding parameters are set as:

./vpxenc input_file.y4m -o output_file.y4m
--target-bitrate=$BIT_RATE
--cpu-used=0 --passes=2

where --cpu-used=0 makes the encoder run at highest
complexity mode for best compression efficiency. The test
clips include CIF to HD resolutions. The operating bit-rates
are set to cover 35dB to 45dB range for each clip. Their
coding performance as compared to the baseline is shown in
Table I.

TABLE I
THE COMPRESSION PERFORMANCE OF THE LAGRANGIAN MULTIPLIER

OPTIMIZATION USING MB-TREE AND THE PROPOSED TPL RESPECTIVELY
AS COMPARED TO BASELINE VP9 ENCODER. THE PERFORMANCE IS

EVALUATED IN TERMS OF BD-RATE REDUCTION. A NEGATIVE NUMBER
MEANS BETTER COMPRESSION EFFICIENCY.

MB-tree TPL
PSNR SSIM PSNR SSIM

basketballpass 240p -1.72% -3.71% -1.63% -4.65%
keiba 240p -0.75% -1.22% -1.00% -2.00%
football cif -0.18% -0.86% -0.20% -1.40%

ice 4cif -1.79% -3.09% -2.08% -5.42%
RaceHorses 480p -1.25% -1.63% -1.22% -2.10%

soccer 4cif -1.27% -1.81% -1.44% -3.05%
harbour 4cif -1.18% -1.31% -1.16% -1.34%

BalloonFestival 720p -0.59% -3.70% -0.75% -4.52%
Market3 720p -0.65% -2.43% -0.87% -3.52%
parkjoy 1080p -2.38% -4.19% -2.68% -5.58%
factory 1080p -0.54% -0.38% -0.69% -0.93%
tennis 1080p -0.82% -0.59% -0.90% -1.39%

pedestrian 1080p -2.48% -2.95% -2.71% -4.07%
parkscene 1080p -1.70% -1.40% -1.54% -2.26%

ducks take off 1080p -0.46% -0.25% -0.66% -0.65%
cyclists 720p -0.11% 0.204% -0.79% -2.70%

It is observed that the MB-tree provides fairly consistent
compression gains over the baseline, where the frame level
QP is optimized according to the first pass encode statis-
tics. The proposed TPL model further outperforms MB-tree
when the innovation to quantization noise ratio varies signif-
icantly across 64x64 blocks within a frame, e.g., ice_4cif
and pedestrian_1080p. When the innovation process is
largely uniform across the frame, e.g., harbour_4cif, the
quantization effect in (8) uniformly applies to all 64x64 blocks.
Its effect will be mostly cancelled out by the normalization
step in the above Lagrangian multiplier adaptation scheme.
Hence we typically see similar compression performance
between MB-tree and TPL.

V. CONCLUSIONS

A novel temporal dependency model is proposed to ac-
count for the quantization effect on the distortion propagation
through the motion trajectory. Integrated with an adaptive
Lagrangian multiplier scheme, the derived model is shown to
provide considerable compression performance improvements
over the MB-tree. While tested in the VP9 framework, the
proposed temporal dependency model is generally applicable
to all block based video codec that uses motion compensated
prediction.
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