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Abstract—This paper focuses on a novel lossless image com-
pression algorithm which can be efficiently used for Internet of
Things (IoT) multimedia applications. The proposed algorithm
has low memory requirements and relies on a simple and
efficient encoding scheme. Thus it can be easily implemented
even in low-cost microcontrollers as those commonly used in
several IoT platforms. Despite its simplicity, comparison results
on different image datasets show that the proposed algorithm
achieves compression ratios comparable with other more complex
state-of-the-art solutions.

I. INTRODUCTION

The Internet of Things (IoT) paradigm has been recently ex-

tended to multimedia applications such as, for instance, traffic

monitoring [1], unmanned aerial vehicle (UAV) [2], wireless

endoscopies [3] and smart glasses [4]. In this context, image

compression techniques can be used with the aim of reducing

storage resources and increasing lifetime of battery-powered

devices [5]. Usually it is assumed that IoT devices have enough

storage and processing resources to run complex and powerful

algorithms [6]. However, with the aim to achieve low-cost

systems, IoT platforms rely often on resource constrained

microprocessors with only a few kilobytes of memory [7]–

[9]. Therefore low-complexity and low-memory compression

algorithms are usually preferred if not mandatory [10], [11].

High performance image compression standards exist, e.g.,

JPEG2000 [12], [13], H.264 [14] and HEVC [15]. However

memory requirements of these compression standards are not

compatible with memory resources of several IoT devices.

Compression algorithms can be broadly classified in lossless

and lossy compression algorithms [16], [17]. In both cases

the first metric considered to evaluate their performance is the

Compression Ratio (CR), here defined as the ratio between the

number of bits before and after compression. As general rule,

lossy compression algorithms allow to achieve much higher

compression ratios, however lossless algorithms are preferred

in some applications, for instance in biomedical instruments

where lossless compression ensure that image details are not

lost causing errors in medical diagnosis [18]–[20].

Although several lossless image compression algorithms

exist, most of them are not suitable when only limited storage

and computational resources are available [21]. Therefore, in

the case of resource constrained devices, the trade-off between

computational complexity and the achievable compression

ratio must be further considered.

In this paper we present a novel lossless image compression

algorithm. The proposed algorithm is based on simple arith-

metic operations and an efficient encoding scheme, therefore it

can be easily implemented even in resource constrained micro-

controllers as those commonly used in several IoT platforms.

In this paper we show that, despite its simplicity, the pro-

posed algorithm achieves compression ratios comparable with

other state-of-the-art lossless compression algorithms based on

more complex predictors and encoding schemes.

The rest of this paper is organized as follows: in Sec. II

related works are discussed; in Sec. III the proposed algo-

rithm is introduced; in Sec. IV performance and complexity

of the proposed algorithm and other state-of-the-art lossless

compression schemes are compared. Finally, conclusions and

future works are drawn in Sec. V.

II. RELATED WORKS

The basic idea behind several lossless image compression

algorithms is to exploit spatial correlation to reduce image re-

dundancy. Accordingly, many lossless compression algorithms

operate in two phases:

• in the first phase, a predictor is used; basically, in this

phase, immediate neighbours pixel are used to obtain

an estimate x̂ij of the color of the actual pixel xij . An

example is given by the Median Edge Detection (MED)

predictor used in JPEG-LS [22] standard where

x̂ij = max{xi−1,j , xi,j−1, xi−1,j−1}+

min{xi−1,j , xi,j−1, xi−1,j−1}+

−xi−1,j−1 (1)

Other commonly used predictors are reported in Fig. 1 but

several techniques exist ranging from nonlinear predic-

tion schemes to more computationally intensive solutions

based on fractals and neural networks [23].
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7 (A+B)/2

MED max{A,B,C}+
+min{A,B,C} − C

Fig. 1. Example of predictors used for image compression.
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TABLE I
A FEW LOSSLESS IMAGE COMPRESSION ALGORITHMS.

Algorithm GIF [30] PNG [31] JPEG-LL [32] JPEG-LS [22] CALIC [33] SFALIC [34] BTPC [35] Proposed

Predictor —
set of 5
linear

predictors

set of 8
linear

predictors

MED +
context

modelling

GAP +
context

modelling

set of 9
linear

predictors

set of 7
linear

predictors
MED

Encoder LZW DEFLATE
Huffman or

AC
AC

Huffman
or AC

GR Huffman RAKE

• In the second phase, the difference rij = xij − x̂ij ,

henceforward named residue, is encoded using a code-

book specifically optimized to achieve a mean codeword

length near the Shannon’s entropy [24]. Huffman Coding

[25], Arithmetic Coding (AC) [26], Golomb-Rice (GR)

[27] [28] and Lempel-Ziv-Welch (LZW) [29] are example

of encoding techniques commonly used in this phase.

Compression algorithms based on the previous approach

are referred as prediction encoding algorithms. Examples of

such kind of compression algorithms are GIF [30], PNG [31],

JPEG-LL [32], JPEG-LS [22], CALIC [33], SFALIC [34] and

BTPC [35]. We summarize their characteristics in Tab. I.

Comparison results show that, among the above mentioned

algorithms, CALIC and JPEG-LS achieves in most cases

higher compression ratios [36] at the cost of more complex

prediction schemes based on context modelling. Context mod-

elling is able to exploit high-order structures such as texture

patterns however requires a considerable amount of memory.

Another class of lossless compression algorithms is based

on transforms. A well known and powerful compression

algorithm belonging to the this class is SPIHT [37]. SPIHT

is mainly based on Discrete Wavelet Transform (DWT) and

an efficient sorting technique. SPIHT relies on three steps

that cause increase in complexity and need huge memory.

Some efforts have been carried out in order to adapt SPIHT

to memory-constrained devices [38] [39]. However obtaining

a low-memory implementation of SPIHT is still an open

research problem [40].

Comparison results reported in [20], [41] show that, when

lossless image compression is considered, prediction encoding

methods outperform transform based solutions. Therefore in

this paper we consider prediction encoding algorithms for

comparison purpose.

III. PROPOSED ALGORITHM

The proposed algorithm is based on an efficient encoding

scheme for binary sequences recently proposed in [42] and

named RAKE (the name derives from the homonymous tool

used in agriculture). In [42] the authors showed that in the

case of sparse sequences, i.e. sequence with a few non-zero

bits, the RAKE algorithm is able to outperform other encoding

techniques such as the Run-Length Encoding (RLE) [17].

For the sake of readability, we report a short description of

the RAKE algorithm in the next subsection.

A. RAKE algorithm

Basically, RAKE encodes positions of non-zero bits in

an efficient manner. We can explain the RAKE algorithm

by considering a sliding window of length T that moves

forward over the original (uncompressed) binary sequence (see

Figure 2). The window operates as a hand-rake able to catch T

bits at a time. In particular, every time that T bits are caught,

an output codeword is generated according to the following

two possible cases:

1) There are no set bits within the window (i.e. all T bits

are zeros). In this case a single zero bit codeword is

used and the sliding window is moved forward by T

positions;

2) At least a set bit is found. In this case a codeword of

1 + ⌈log2 T ⌉ bits is generated where the first bit is set

to 1 and the other ⌈log2 T ⌉ bits are used to encode the

position p ∈ [0, ..., T −1] of the first non-zero bit within

the window. Then the window moves forward by p+ 1
positions (i.e. immediately after the set bit that has been

already encoded).

The above operations are repeated until the sliding window

reaches the end of the sequence to be compressed. It is

worth noting that only counting operations are needed for

implementing the above procedure.

In Figure 2 a simple example is reported showing how

the sequence Sin = [010000001010000] of n = 15 bits is

compressed by the RAKE algorithm to produce a compressed

sequence Cout = RAKE(Sin) = [10101101010] of 11 bits.

According to [42], the following expression provides the

optimal value of T for a binary sequence of length n with k

non-zero bits:

T =
(n

k
− 1

)

· ln(2) (2)

The value of T must be known in order to reconstruct

the original sequence, thus a few bits must be added at the

beginning of the compressed sequence. As suggested in [42],

T can be represented with only O(log2(log2(T ))) bits by

constraining the value of T to be a power of two. In this

case the RAKE algorithm has a negligible overhead.
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Fig. 2. Example of RAKE compression algorithm (T = 4).
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B. Using the RAKE algorithm for image compression

The RAKE algorithm can be used in combination with every

transformation or pre-processing technique able to obtain a

sparse binary sequence from the original data set. For instance,

in [42] the authors combined RAKE and one-hot encoding

for compression of environmental signals, i.e. temperature and

humidity, and in [43] RAKE has been used for compression

of ECG signals. In this paper we show how RAKE can be

profitably used for image compression.

The basic idea is to apply the RAKE algorithm to the bit

planes obtained after prediction. More precisely, we consider

an image as a set of blocks of B × B pixels each and we

process each block [xij ], where i, j ∈ [1, ..., B], in three steps:

1) MED prediction: the MED predictor is applied to the

original image by obtaining, for each block, a set of

residues [rij ]; moreover, in this phase, the minimum

number of bits w needed for residues representation is

evaluated;

2) Zig-zag remapping: residues are remapped on the basis

of the following equation:

r′ij = 2 · |rij | − (rij < 0) (3)

As shown in [43] remapping increases sparsity and

therefore it is able to improve the RAKE efficiency.

Henceforward we referred to remapped values [r′ij ] as

zig-zag encoded residues.

3) RAKE encoding: in this step the RAKE algorithm is

applied to zig-zag encoded residues. More precisely, zig-

zag encoded residues [r′ij ] are logically decomposed into

w+1 binary matrices, i.e. A(1), ..., A(w+1), where A(k)

represents the k-th bit plane of each block; the RAKE

algorithm is applied to each binary matrix A(k) to obtain

a set of w + 1 compressed strings, RAKE(A(k)) with

k ∈ [1, ..., w + 1].

Finally, compressed strings representing bit planes of each

block are concatenated to obtain the compressed block

Cout = [w,RAKE(A(1)), ..., RAKE(A(w+1))].

Note that, from a computational point of view, only counting

and simple arithmetic operations are needed for implementing

the proposed algorithm.

Moreover the same memory locations used to store the

original image can be used to store encoded residues [r′ij ].
Finally, no additional memory is needed to store the matrix

A(k). In fact the element A
(k)
ij of A(k) coincides with the

k-th bit of r′ij so that [A(1), ..., A(w+1)] is only a logical

representation of the residues [r′ij ].

C. Considerations on the Block Size

Henceforward we consider blocks of 16 × 16 pixels each

(i.e. B = 16). In this case only 256 words at a time have to be

stored by IoT devices and this number of words can be easily

handled. Moreover, considering a compression factor of two,

compressed blocks of 8-bit grayscale images can be accom-

modated into a payload of less than 128 bytes. This length

is compatible with the maximum payload length specified by

several wireless communication protocols commonly used for

IoT (i.e. IEEE802.15.4, ZigBee and BLE, to name just a few).

So that, as usual in edge computing applications, a block at

a time can be processed by IoT devices and sent to a second

remote device that acts as a gateway and which can offer more

storage and computational resources to reconstruct and further

process the original image.

IV. COMPARISON RESULTS

In this section we compare the proposed compression al-

gorithm with other state-of-the-art lossless compression tech-

niques in terms of the following metrics:

• Compression Ratio (CR), here defined as the ratio be-

tween the number of bits before and after compression;

• Bits Per Pixel (BPP), i.e. the number of bits per pixel

required by the compressed image.

Obviously the above metrics are related by BPP · CR = b

where b is the number of bits per pixel of the original/uncom-

pressed image.

The test images used in this paper are available in [44]

and [45]. In particular, test images in [44] contains Lena and

other well-known 8-bit grayscale images shown in Fig. 3. Test

images in [45] is a set of 1400 monochromatic images with a

single closed contour (for sake of space only a few of them

are shown in Fig. 4).

At first we proved that RAKE can be more efficient than

arithmetic codes (AC). For this purpose we applied both

RAKE and AC to the same set of remapped residues obtained

with a MED predictor and zig-zag remapping. As it is possible

to observe in Tab. II, RAKE achieves better results for almost

all images with an average improvement of 0.35 BPP and

a maximum improvement of 1.2 BPP (obtained on camera

image).

TABLE II
BITS PER PIXEL (BPP) ACHIEVED WITH RAKE AND AC WHEN APPLIED

TO THE SAME SET OF REMAPPED RESIDUES.

Image name Image size (WxH) AC RAKE

airplane (512x512) 4.352 4.047

baboon (512x512) 6.436 6.194

balloon (576x720) 3.217 3.123

barb (576x720) 4.543 4.895

barb2 (576x720) 5.209 5.010

camera (256x256) 5.713 4.545

couple (256x256) 4.994 3.894

goldhill (576x720) 4.805 4.678

lena (512x512) 5.070 4.874

lennagrey (512x512) 4.716 4.489

noisesquare (256x256) 6.733 5.842

peppers (512x512) 4.977 4.907

shapes (512x512) 1.687 1.402

Average BPP 4.804 4.454

In Tab. III we reported BPP achieved with RAKE and

other lossless compression algorithms when applied to the

set of grayscale images shown in Fig. 3. As it is possible

to observe, despite its simplicity, RAKE outperforms GIF

and PNG and achieves compression results similar to those
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(a) airplane (b) baboon (c) camera

(d) barb (e) barb2 (f) balloon

(g) couple (h) shapes (i) lena

(j) lennagrey (k) noisesquare (l) peppers

(m) goldhill

Fig. 3. Grayscale images used for tests.

Fig. 4. Some images of the monochromatic dataset used for tests.

TABLE III
BITS PER PIXEL (BPP) ACHIEVED WITH RAKE AND OTHER LOSSLESS

COMPRESSION ALGORITHMS ON GRAY-SCALE IMAGES

Image CALIC JPEG-LS GIF PNG RAKE

airplane 3.703 3.818 6.547 5.750 4.047

baboon 5.897 6.037 9.360 7.281 6.194

balloon 2.788 2.904 6.315 5.424 3.123

barb 4.339 4.692 8.740 7.011 4.895

barb2 4.480 4.687 8.631 6.871 5.010

camera 4.172 4.316 6.769 5.971 4.545

couple 3.567 3.701 6.599 5.681 3.894

goldhill 4.370 4.477 7.690 6.563 4.678

lena 4.463 4.608 8.502 7.174 4.874

lennagrey 4.087 4.239 8.072 6.828 4.489

noisesquare 5.408 5.685 6.810 5.901 5.842

peppers 4.398 4.513 8.236 7.110 4.907

shapes 0.914 1.214 2.481 1.430 1.402

Average BPP 4.045 4.222 7.288 6.076 4.454

obtained with CALIC and JPEG-LS. Despite CALIC and

JPEG-LS achieve better results, it should be considered that

proposed algorithm does not rely to context modelling. As

already observed in Sec. II context modelling is used to exploit

high-order structures, such as texture patterns, but requires a

considerable amount of memory. In particular up to 367 and

576 conditioning contexts are needed respectively by JPEG-

LS and CALIC. Therefore, when applied to grayscale images,

RAKE provides a highly memory-efficient compression algo-

rithm with about 5% performance penalty compared to JPEG-

LS and about 10% compared to CALIC.

Finally, in Tab. IV we reported BPP and CR achieved with

RAKE and other lossless compression algorithms applied to

the set of 1400 monochromatic images reported in [45]. In

the case of monochromatic images we used a slightly modified

version of the MED predictor obtained by replacing arithmetic

operations in eq.(1) with simple logical XOR operations. As

a consequence zig-zag remapping can be avoided. As it is

possible to observe, in the case of monochromatic images

RAKE outperforms both CALIC and JPEG-LS. In particular,

in comparison to JPEG-LS, the RAKE improves the compres-

sion ratio by 79%. Even in comparison to CALIC a substantial

improvement of 28% is achieved on the compression ratio.

TABLE IV
AVERAGE BPP AND CR OBTAINED WITH RAKE AND OTHER LOSSLESS

ALGORITHMS ON A SET OF 1400 MONOCHROMATIC IMAGES

CALIC JPEG-LS GIF PNG RAKE

Average BPP 0.067 0.089 0.128 0.107 0.054

Average CR 23.3 16.7 10.2 14.5 29.9

V. CONCLUSION AND FUTURE WORKS

In this paper we have presented a simple and effec-

tive algorithm for lossless image compression. Using only

arithmetic and counting operations, the proposed algorithm

achieves compression ratios comparable with other state-of-

the-art lossless compression algorithms based on more com-

plex predictors and encoding schemes. Considering its inherent

low complexity and memory requirement, the algorithm is
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well suited for resource constrained IoT devices. As future

work, the possibility to apply the RAKE algorithm for lossy

compression and the trade-off between time and memory

complexity will be investigated.
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