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Abstract—Many interesting matrix decompositions / factoriza-
tions, and especially many tensor decompositions, have to be
solved by non-convex optimization-based algorithms, that may
converge to local optima. Hence, when interpretability of the
components is a requirement, practitioners have to compute
the decomposition (e.g. CPD) many times, with different ini-
tializations, to verify whether the components are reproducible
over repetitions of the optimization. However, it is non-trivial
to assess such reliability or stability when multiple local optima
are encountered. We propose an efficient algorithm that clusters
the different repetitions of the decomposition according to the
local optimum that they belong to, offering a diagnostic tool to
practitioners. Our algorithm employs a graph-based representa-
tion of the decomposition, in which every repetition corresponds
to a node, and similarities between components are encoded as
edges. Clustering is then performed by exploiting a property
known as cycle consistency, leading to a low-rank approximation
of the graph. We demonstrate the applicability of our method on
realistic electroencephalographic (EEG) data and synthetic data.

I. INTRODUCTION

Decompositions or factorizations of matrices or tensors
(multiway arrays) into a number of components are useful in a
variety of signal processing, data mining and machine learning
applications, in which the matrix or tensor represents a certain
multivariate signal or dataset. Matrix decompositions such
as non-negative matrix factorization (NMF) or independent
component analysis (ICA) have attracted a lot of interest
in the past decades and are used in numerous applications
of telecommunications, biomedical signal processing, blind
source separation (BSS), exploratory data analysis, etc. [1].
Tensors, which are generalizations of matrices to higher or-
ders, have also found their way into these domains [2]. Several
extensions of matrix decompositions to higher order exist,
such as the (non-negative) canonical polyadic decomposition
(CPD) and the (Lr, Lr, 1)-decomposition [2], [3]. Coupled
matrix/matrix, matrix/tensor and tensor/tensor decompositions
are used in data fusion, i.e., when multiple datasets which are
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similar in at least one mode are available [1], [4]. In many
cases, decompositions of (noisy) data have no closed-form
solution and have to be computed iteratively, i.e., by means of
an optimization algorithm. Whereas algebraic algorithms exist
for various decompositions, they can only be used when the
data exactly follows the imposed structure, or to initialize an
optimization algorithm (see e.g. [5] and references therein).
In many of the discussed examples (e.g. ICA, NMF, CPD),
the optimization problem is non-convex and only convergence
to a local optimum can be guaranteed, e.g. when minimizing
the residual between the observed data and a factor model
thereof (CPD, NMF), or when maximizing a measure of
independence between component time courses (ICA). This
can pose a problem if one wants to interpret the components
of the decomposition, since these components may vary sub-
stantially between local optima, even though the associated
values of the optimized cost function need not be significantly
different. Furthermore, in some applications, because of a
considerable influence by noise and/or artifacts, the optimum
with the lowest cost value is not guaranteed to yield the most
meaningful result. Consider, for example, the computation of a
CPD of tensor-valued data that are heavily corrupted by noise
and/or artifacts. When fitting the CPD model by minimizing
the mean squared error, one or more of the CPD components
may model variance that is due to the noise or strong artifacts,
neglecting ‘true’ sources of interest that remain undiscovered.
In this case, another solution, in which the artifacts are fully
captured in the residual, and where all CPD components model
activity of interest, may attain a worse cost value, but may be
much more interpretable and meaningful.

From the problem statement above, we distill a practical
need to assess the reproducibility of (non-convex) matrix
or tensor decompositions. In the current context, this means
accurately clustering repetitions of the associated optimization
problems in terms of their locally optimal solutions for further
interpretation.

A well-known method that attempts such clustering is
ICASSO [6], which was designed to assess the reproducibility
of ICA decompositions, but whose concepts may be used for
other matrix or tensor factorizations as well, e.g. as in [7].
The usefulness of this method depends on the user-defined
number of clusters, which can be difficult to estimate if the
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factorization is not very stable.
Related approaches exist in non-signal processing-related

contexts. A parallel can be drawn between assessing re-
producibility of non-convex decompositions and establishing
correspondences (maps or transformations) between (points
on) multiple objects. The latter problem appears in many
applications, e.g., fusing partially overlapping images of a
certain scene [8], extracting structure from motion [9], finding
dense correspondences between collections of 3D shapes [10],
etc. E.g., for the case of image fusion, a link must be
established between points in two images if these correspond
to the same physical point. Similarly, we aim to identify
whether a component appears in two distinct repetitions of the
decomposition. While it is feasible to estimate local (pairwise)
maps between objects, it is not trivial to extract the global
information (over all repetitions) on the correspondences, e.g.
because pairwise maps may be noisy and may lead to am-
biguities, especially when similar points on the same objects
are present [11]. However, starting from a collection of noisy
pairwise maps, techniques known as joint object matching or
map synchronization may exploit constraints to retrieve cor-
rected maps that reveal the global structure [12], [13]. Several
algorithms have been devised for this objective, of which most
treat the problem in a graph framework: objects are treated
as nodes, and the input pairwise maps are transformations
residing on the edges between them [10]–[13]. In this paper,
we propose to use map synchronization principles to identify
reliable components of the CPD and assess which components
co-occur frequently. Under this setting, the ‘right’ number of
clusters appears naturally from the problem representation and
synchronization constraints, fostering a correct interpretation
of the components. We demonstrate our technique on the
decomposition of electroencephalographic (EEG) data of mul-
tiple subjects, and compare its performance to that of ICASSO.

II. METHODS

A. (Non-convex) matrix and tensor factorizations

We denote scalars, vectors, matrices and tensors by lower
case (e.g. a), lower case boldface (e.g. a), upper case boldface
(e.g. A) and bold upper case calligraphic letters (e.g. A),
respectively. An M th order tensor A ∈ RI1×I2×···×IM is
a multiway array which holds data varying over M modes
(e.g. sensors, time points, frequencies, ...) with dimensions I1,
I2, ... , IM , respectively. A tensor may be (approximately)
decomposed or factorized as a sum of rank-1 terms, where
every rank-1 term is an outer product (⊗) of M vectors, which
is known as the parallel factor analysis (PARAFAC) or CPD
model [1]–[3]. For an M th order tensor T , this gives:

T =
R∑
r=1

a(1)r ⊗a(2)r ⊗ . . . ⊗a(M)
r + Ex , (1)

where any column vector a
(m)
r ∈ RIn is the mode-m factor

vector of the rth component or term, and Ex is a residual
tensor. As there is no closed-form solution for the fac-
tor matrices A(m) =

[
a
(m)
1 a

(m)
2 . . .a

(m)
R

]
, m = 1 . . .M that

minimize the Frobenius norm ‖Ex‖2F in (1), optimization
algorithms are commonly used to iteratively update a cost
function, e.g. of the form

J(A(1), . . . ,A(M)) =

∥∥∥∥∥T −
R∑
r=1

a(1)r ⊗ . . . ⊗a(M)
r

∥∥∥∥∥
2

F

(2)

In data fusion, multiple tensors and/or matrices are decom-
posed simultaneously, and the cost function is a linear combi-
nation of fit terms similar to those in (2) [1], [4], [14]. As
discussed in section I, many cost functions for tensor and
matrix decompositions are non-convex, and hence the opti-
mization algorithm may converge to different local minima,
depending on the initialization for the factor matrices. When
the components’ factor vectors a

(m)
r are to be interpreted,

e.g. in BSS, it is therefore wise to repeat the optimization
several times with different initializations, and verify which
components seem stable over several runs (and therefore
interpretable) and which seem be specific to a local solution.

B. Inter-factorization similarity as a graph

To assess the reproducibility or stability of a factoriza-
tion (in R terms), we need to investigate the similarity of
components across all repetitions of the decomposition with
different initialization, up to permutation and scaling. A graph
representation can accommodate for such similarity relation-
ships. Following the notation in [11], we treat every repetition
n = 1 . . . N of the decomposition as an object Sn ∈ S with
R points. An observation graph G = (S, E) can then be
constructed by connecting any two repetitions Si and Sj by an
edge (i, j) ∈ E if at least one component is shared between
them. We consider the mapping Sj 7→ Si on the edge (i, j)
as an assignment matrix Xij ∈ {0, 1}R×R, which indicates
which components of Sj match which components of Si1.
The entire graph can then be represented by a block matrix
X ∈ {0, 1}NR×NR as follows:

X =


I X12 · · · X1N

XT
12 I · · · X2N

...
...

. . .
...

XT
1N XT

2N · · · I

 (3)

The submatrices Xij encode local, pairwise correspondence.
If (i′, j′) /∈ E , i.e., no component is shared between Si′ and
Sj′ , Xi′j′ is an all-zero matrix in (3). Note that composite
maps, e.g. Sk 7→ Sj 7→ Si can be constructed by matrix mul-
tiplication:

Xik = XijXjk (4)

= XijX
T
kj (5)

1If the reproducibility between decompositions of varying rank is of
interest, the transformation matrices are described by non-square matrices
Xij ∈ {0, 1}|Si|×|Sj |. This does not alter the remainder of the method.
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C. Repeated decompositions exhibit cycle consistency

If the optimization routine converges to the same lo-
cal optimum in several repetitions, the associated maps
are permutation matrices. Together with (5), this imme-
diately leads to the following key observation: composite
maps Si 7→ Sj 7→ Sk 7→ · · · 7→ Si along cycles in the graph
should be equal to the identity map. Such a cycle consistency
property can be exploited as a constraint to correct noisy input
maps Xij , a technique which is known as map synchronization
[10]–[13]. We now aim to offer an intuition for this consistency
from three different perspectives. Firstly, note that in a valid
graph representation as in (3), consistency holds for any cycle
that can be constructed along the edges in E , and as such it
constitutes in fact a quite restrictive set of constraints of the
form Xi... · · ·XkjXji = I [10]. Secondly, consider the factor
matrices A(m)

n of an arbitrary mode m of all repetitions n, and
stack these in a fat matrix A(m) =

[
A

(m)
1 A

(m)
2 . . .A

(m)
N

]
.

A component that appears in multiple repetitions n1 ⊂ n
then contributes columns, which are the same (up to scaling
ambiguity), to the associated A

(m)
n1 . It is then clear that

rank(A(m)) = R̃ > R , where R̃ is the number of distinct
components that are found in all repetitions n of the decom-
position. This establishes a link between cycle consistency
and low-rank structure. Lastly, consider that all repetitions Si
are (partial) instances of a universe Su holding all R̃ distinct
components as ‘templates’ [11]. Using (4)–(5), we can write
any map Sj 7→ Si as a composite map with the universe as
a hub, such that Xij = XiuXuj = XiuX

T
ju, ∀(i, j) ∈ E . This

reveals that the inter-factorization similarity matrix X admits
a positive semi-definite rank-R̃ decomposition [10]–[12]:

X = XuX
T
u =


X1u

X2u

...
XNu

 [XT
1u XT

2u · · · XT
Nu

]
(6)

In realistic scenarios, ambiguities and noise in the (local)
input maps Xij can destroy the (global) cycle consistency and
hence the low-rankness in (6) is only approximate. Our goal
is now to retrieve Xu from the imperfect inter-factorization
similarity matrix X, in order to assign each individual factor-
ization’s component to the correct universal component in Su
and assess the decomposition’s reproducibility.

D. Clustering through low-rank graph approximation

For a valid (i.e. noiseless) graph encoding, every row of the
block Xiu (corresponding to a component of factorization i)
consists of all zeros except for a one at the index of the
universal component to which that row is assigned. All rows
that are assigned to the same universal component are then
equal and form a ‘clique’. Hence, if we can find an estimate
X̂u of Xu, up to an orthogonal transformation, we can cluster
its rows in order to categorize the components [12]. As in [12],
[13], we estimate Xu as the leading R̃ eigenvectors of X,
weighted by the square root of their eigenvalues, and propose
to use hierarchical clustering based on average linkage, a

strategy which is also used in ICASSO [6]. The number
of distinct components R̃, which also equals the dimension
of the resulting feature space, is found by truncating at the
largest relative drop λr−λr+1

|λr|+|λr+1| in the eigenvalue spectrum
[12]. To further investigate which components often co-occur
in the local solutions, we characterize each of the r = 1 . . . R̃
estimated cliques by means of the set S(r) of objects who
contribute a component to the clique. The object overlap
between any two cliques p and q can then be measured by
the Dice coefficient d(p, q) = 2 |S

(p)∩S(q)|
|S(p)|+|S(q)| . The R̃ × R̃

overlap matrix can then be used for a second stage of average
linkage clustering, to find groups of cliques that share many
objects. These groups indicate which components are often
simultaneously present in repetitions of the optimization.

III. EXPERIMENTS

We conducted two case studies, based on real data and
synthetic data, to evaluate our proposed method. In both cases,
we compute the similarity between the rth component of the
ith run and the sth component of the jth run as

σ(ri, sj) =

M∏
m∈Mσ

σm(ri, sj) =

∣∣∣∣∣
M∏

m∈Mσ

〈a(m)
ri ,a(m)

sj 〉

∣∣∣∣∣
1

|Mσ|

(7)

Here, the factor vectors have been normalized to unit norm,
and hence σm(ri, sj) is the (exponentiated) mode-m cosine
similarity metric, as in [3]. The product of mode-wise similar-
ities is taken overMσ , which is the set of all modes in which
component reproducibility is expected/desired2. Thus, σ as in
(7) generalizes the metric used in [6]. Finally, we binarize the
similarities using a threshold of 0.95 and populate all matrices
Xij . All decompositions are computed using state-of-the-art
Gauss-Newton type algorithms in Tensorlab [15].

A. CPD of neuroimaging data

We analyzed multi-subject electroencephalographic (EEG)
data, recorded in an MR scanner, using a pipeline similar to
that of [7]. For every subject s = 1 . . . 12, resting state EEG
data from 15 electrodes was converted into a spectrogram
T (s) ∈ R15×40×1350, evaluated at 40 1-Hz frequency bins and
1350 1-s windows. We wanted to extract reliable spatial and
spectral signatures of modulated resting state network (RSN)
activity [7]. In order to find these signatures, we sliced every
T (s) halfway along the third mode and stacked either half

into two large tensors T begin, T end ∈ R15×40×(12 · 13502 ), which
we normalized as in [7]. By decomposing T begin and T end

separately, we expected to find components that were common
and may model true RSN modes, but also components that
modeled data-specific fluctuations in either half [3], [7] that
may be less interesting. We computed a rank-10 CPD of
both halves 100 times and applied our algorithm to cluster

2E.g. in the case of the (Lr, Lr, 1)-decomposition, a rotational ambiguity
in the first two modes remains. Hence, similarities may not be computed for
these modes separately, but for entire frontal slices, ‘absorbing’ the ambiguity.
Using a parametrization as in [14], equation (7) can be extended to account for
similarity of components’ magnitudes as well, with e.g. a ratio-based metric.
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Fig. 1. Our algorithm successfully clusters spatio-spectral components that
appear in nearly all runs of the decomposition and are hence reliable
(left column), but also distinguishes components that are specific to the
decomposition of each half (light/dark grey) of the data (right column). The
mean spectra are superimposed in red. The variability of spatial signatures
around their mean (which is plotted) was comparably small as for the spectra.

the resulting components in the spatial and spectral mode
(between the halves, no temporal correspondence is expected).
We used cpd_nls and initialized all factor matrices using
i.i.d. Gaussian variables [15]. Using the heuristic in section
II-D, we found that R̃ = 275, though most of the spectral
energy was concentrated in the first few eigenvalues of X,
i.e., many of these individual templates appeared only in a
few runs, and a small set of templates accounted for most of
the runs’ components. As shown in Fig.1, we found a subset
of seven components that were encountered in nearly every
run (left column), and two subsets of three components each,
which were only found in T begin or T end, respectively (right
column). From this split-half experiment, we may conclude
that the latter two subsets of components are less reliable, in
the sense that they seem specific to a data segment, whereas
the common components may be further inspected. E.g., in the
third component we can identify typical alpha (10 Hz) power
increases in the occipital regions, at the back of the head.
Note, however, that some common components need not be
RSN-related: e.g. the sixth component seems to capture two
harmonics that may be due to residual MR scanner artifacts.

We also attempted to cluster the components directly based
on X using agglomerative average linkage, as in ICASSO.
Since ICASSO leaves the choice of number of clusters to the
user, we varied this number (which we will also denote by

inter-cluster similarity

0 0.25 0.5 0.75 1

1 - intra-cluster similarity

0

0.02

0.04

our method

high

ICASSO for varying

number of clusters

low

more coherent clusters

Fig. 2. When grouping EEG tensor decomposition components in clusters,
our algorithm realizes a favourable tradeoff between high intra-cluster simi-
larity and low maximal inter-cluster similarity. This is thanks to the proper
(automatic) estimation of the number of clusters R̃ (darker is higher), in an
R̃-dimensional component space, which is not possible with ICASSO.

R̃) between R̃ = R = 10 (i.e., assuming that every run of the
decomposition will return the same components) and R̃ = 400,
in increments of 10. To evaluate the clustering performance,
we kept track of 1) the average similarity σ of components
within the same cluster and 2) the maximal average similarity
σ between all components of a cluster and all components of
another cluster, as in [6]. These two metrics can respectively
indicate (per cluster) whether a cluster contains too much
variability and would better be split in several smaller, more
compact clusters, and whether two clusters are too similar and
would better be merged. In Fig.2, we set out the median of
these values (over clusters) against each other (closer to the
origin is better). By means of the low-rank graph framework,
our proposed method automatically achieves a good operating
point, where the components within every cluster are mutually
very similar, and the undesired inter-cluster similarity is lower
than for most choices of the hyperparameter R̃ in ICASSO. For
low values of R̃, the inevitable variability of the components
over runs was neglected, and dissimilar components were
wrongly grouped together. On the other hand, when R̃ was
overestimated, coherent clusters were wrongfully split into
smaller clusters. For a few choices of R̃ (ca. 60–100), ICASSO
found the same division in (main) clusters as in Fig.1, though
this required much more computation and user interaction due
to the iterative nature of the tuning procedure.

B. Coupled matrix-tensor factorization of synthetic data

We generated synthetic multimodal data according to a
coupled matrix-tensor factorization model (CMTF) [14]. In
this case, Mσ comprises the modes of both the tensor and
the matrix. For the tensor T ∈ R20×100×40, factor matrices
of rank 7 were sampled from an exponential distribution. All
columns of the mode-1 factor matrix were shared with the
matrix M ∈ R20×200, which also contained an unshared rank-
1 term. The mode-2 factor matrix of M was generated by
AR(1)-model with coefficient 0.9 and white gaussian noise
as innovations. We added exponentially distributed and white
gaussian noise to both datasets, respectively, with an SNR of
0 dB. Using sdf_nls [4], [15], we computed a CMTF of
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Fig. 3. Also on synthetic multimodal data, the proposed method successfully
groups components of a coupled matrix-tensor factorization in clusters which
are more coherent than those of ICASSO.

the data with five components 100 times, with non-negativity
constraints on the factor matrices of T . Each time, T ’s factor
matrices were initialized as random factor matrices, uniformly
distributed between 0 and 1, after which M’s second factor
matrix was initialized with a pseudo-inverse. We wish to look
at the effect of mismodeling the data, i.e., underestimating
the number of of components (five instead of seven). The
(5 · 100)× (5 · 100) similarity matrix X had an estimated
rank R̃ = 191, indicating that the variability was relatively
high (approximately 191 distinct components out of 500 in
total). Nevertheless, a small set of seven components appeared
relatively frequently (at least in five runs). For ICASSO,
we varied the number of clusters from 5 to 300, in steps
of 5. In comparison of both methods, a similar pattern of
intra- and inter-cluster similarity as in the previous experiment
emerged (see Fig.3). The proposed method again finds (much)
more coherent clusters than ICASSO, i.e., with a low inter-
cluster similarity and a high intra-cluster similarity. We want
to stress that ‘successful clustering’ is not a guarantee of
the truthfulness of the found components. We observed that
several ground-truth components were almost never captured
in an estimated component of a CMTF run. On the other hand,
the ground-truth components that were sucessfully found in
some repetitions (with a relatively high similarity of approxi-
mately 0.5) were most of the time successfully clustered over
repetitions.

IV. DISCUSSION

We have proposed a method to effectively assess the stabil-
ity of components of coupled or uncoupled matrix and tensor
factorizations, in case a non-convex optimization algorithm
has to be repeated with multiple initializations. Inspired by
earlier work in the area of geometric object matching, we
have cast the problem as a structured graph clustering problem,
in which runs of the optimization routine are nodes and the
similarity of the resulting components prescribe the edges
between them. By leveraging a cycle consistency constraint,
a low-rank approximation of this inter-factorization similar-
ity graph can then be computed, which allows an effective
clustering of factorization components. We envision that this

method may be helpful to data mining practitioners who
wish to verify the reproducibility of components without
going through the trouble of manual alignment. Two typical
(and potentially overlapping) use cases are 1) the estimation
and interpretation of individual components from data when
there is concern about their dependency on the algorithm’s
initialization 2) assessing commonality (or stationarity) of
components between two distinct, but related datasets, such as
in split-half experiments. We tested our method on the tensor
decomposition of a real EEG dataset and the coupled matrix-
tensor factorization of synthetic data, and showed that it is
capable of finding meaningful and accurate grouping patterns
over the repetitions of the decomposition. We highlighted its
strengths in comparison to the existing ICASSO algorithm:
in the investigated cases, our method found equally or more
satisfactory clusters, and without the need for manual tuning.
Extensions to block term decompositions (BTD) [5] can be
accommodated by the new framework by appropriately ad-
justing expression (7), while accounting for ambiguities.
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