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Abstract—We propose a trajectory generation algorithm
(STGA) that represents realistically and stochastically trajecto-
ries followed by unmanned air vehicles (UAVs), in particular
quadrotors UAVs. It is meant to be a tool for testing local-
ization, state estimation and control algorithms. We propose
to firstly model a number of representative flight scenarios.
For each scenario, stochastic trajectories are generated. They
follow a parametric non-linear model whose parameters are
determined using a multi-objective evolutionary optimization
method called particle swarm optimization (PSO). Numerical
results are reported to verify feasibility in comparison to pure
random unconstrained trajectory algorithm.

Index Terms—Stochastic trajectory generation, unmanned air
vehicles (UAVs), particle swarm optimization.

I. INTRODUCTION

Electrically powered autonomous air vehicles are getting
high attention for several applications. In particular, quadrotors
offer mechanical simplicity and maneuverability. A key com-
ponent is the ability to track the position of the UAV and more,
in general, its full state (orientation, velocity, acceleration, and
attitude). Often, the literature on radio localization considers
the UAV to be a point mass and focuses only on estimating
the position of the UAV. However, to enable the development
of control algorithms [1], [2] full state is needed. Not only the
position and the evolution of the position (the center of gravity
of the UAV) is relevant, but also the orientation of the UAV
(the pitch, roll, and yaw angles) must be considered when we
want to test the inertial navigation system algorithms or sensor
fusion algorithms [3]–[5]. To the authors knowledge, there is
no recognized simulator that is able to generate statistically
representative trajectories.

In this paper, a non-linear model and its evolution in realistic
representative scenarios is proposed. In each scenario, stochas-
tic trajectories are generated under certain mechanical and
environmental constraints that can be imposed with the given
initial state (IS) and desired state (DS) in three-dimensional
coordinates. Indeed, having a point mass moving randomly
in a three-dimensional space is not enough if a realistic
flight scenario and UAV dynamics have to be considered. In
particular, there exist several methods to generate trajectories,

including B-splines [6], polynomial [1] and machine learning
approaches [7]. In order to provide a method that can represent
the variability of the ensemble of flight trajectories followed
by a UAV, it is of interest to follow a stochastic approach.
In this respect, the Confined Area Random Aerial Trajectory
Emulator (CARATE) proposed in [8], stochastically generates
a 3D path obtained from a variable length previous history of
the trajectory and a tunable set of random variables. CARATE
is specifically designed to emulate stochastic trajectories with a
limited flight area. However, it does not consider the dynamics
of the UAV and it is not optimized to cope with harsh envi-
ronmental constraints. In this paper, we tackle the limitations
above and we propose a stochastic trajectory generation algo-
rithm (STGA) that: (1) takes into account the dynamics of a
quadrotor UAV, and (2) copes with environmental constraints.
The algorithm is derived from a general framework where
trajectories are obtained from the solution of a multi objective
optimization problem solved via particle swarm optimization.
Considering several performance indices for our framework
provides more flexibility and adaptability to represent the
expected behavior of the trajectories in ways that are difficult
to express otherwise. To validate the proposed method, three
representative scenarios are defined:

• Hovering
• Take-off and landing
• Representative aggressive trajectory.

The rest of the paper is organized as follows. In Section
I, a non-linear model and its evolution is given. The three
representative scenarios are described in Section II. Section III
presents the trajectory realization methodology and simulation
results. Finally, the conclusions then follow.

II. UAV NON-LINEAR MODEL

To begin with, we consider the non-linear model of a
quadrotor UAV described in [6] whose dynamics equations
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read as follows

ẍ = u1x

ÿ = u1y

z̈ = u1(cos(θ) cos(ψ))− g
ψ̈ = u2 + φ̇θ̇a1

θ̈ = u3 + φ̇ψ̇a2

φ̈ = u4 + ψ̇θ̇a3 (1)

where a1 =
( Iy−Iz

Ix

)
, a2 =

(
Iz−Ix

Iy

)
, a3 =

( Ix−Iy
Iz

)
and

u1x = u1(cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)) and u1y =
u1(sin(φ) sin(θ) cos(ψ) − cos(φ) sin(ψ)). ξ = [x, y, z]T is
the position of the quadrotor helicopter center of gravity in
the inertial frame and Θ = [φ, θ, ψ]T is the attitude (roll,
pitch and yaw). Ii (i = x, y, z) are the moments of inertia
along the x, y and z directions. u1 is the total force generated
by the four rotors and directly related to the altitude in the z
direction. u2, u3 and u4 are related to the yaw, pitch, and roll
motion respectively. The quantities u = [u1, u2, u3, u4]

T are
the control inputs (control signals) of our dynamical system
model.

A. Simplified Model

By assuming small angles φ and θ and a constant yaw angle
ψ, for instance ψ = 0, (1) can be written as

ẍ = u1θ

ÿ = −u1φθ
z̈ = u1 − g
ψ̈ = u2

θ̈ = u3

φ̈ = u4. (2)

It can be seen that the dynamical system model (2) fulfills
the flatness property [9]. Therefore, it is possible to express
all quantities of the stochastic trajectory generation algorithm
(STGA) as a function of the time evolution of only four
parameters F (t) = (x(t), y(t), z(t), φ(t)) and their time
derivatives.

III. MODELING THREE REPRESENTATIVE FLIGHT
SCENARIOS

The idea of developing a stochastic trajectory generation
algorithm can appear a formidable task since the UAV can
follow a different number of trajectories and be in different
flying environments. Therefore, we propose to consider certain
scenarios that can be representative of realistic flight missions.
In each scenario, the reference trajectory evolution F (t) is
represented with piecewise smooth polynomials of order n
over m time intervals with limits {t0, t1, ..., tm}. One element
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Fig. 1. Evolution of the piecewise continuous polynomial trajectory. Red
circles are the waypoints.

out of F (t) of the piecewise continuous trajectory can be
written as:

S(t) =



∑n
i=0 α1it

i t0 ≤ t ≤ t1∑n
i=0 α2it

i t1 ≤ t ≤ t2
...

...∑n
i=0 αm−1it

i tm−1 ≤ t ≤ tm

(3)

where αji is the ith order polynomial coefficient of the jth

segment. We assume that we know the position, velocity
and acceleration at the start mission and at the end mission.
Our dynamical system model (2) is a second order system
which means that the control inputs are directly related to
the accelerations. Therefore, we need to specify the mini-
mum acceleration trajectory (realistic trajectory) with multiple
intermediate points (waypoints). Each one of the waypoints
is defined with coordinates in the search space, which are
{x(t), y(t), z(t), φ(t)} and each of them is generated stochas-
tically as a uniform random variable ranging between a lower
and an upper limit. The waypoints are distributed over time by
the user. This configuration describes a stochastic behaviour
for F (t). Indeed, by changing the location of the waypoints
in the search space, a new trajectory can be realized (see
Fig. 1). According to Fig. 1, we highlight that there must be
continuity between segments. We impose that the velocity and
acceleration of a given first segment match with the beginning
of the adjacent segment. This is done for all segments, so that
we obtain 4m constraints to determine the coefficients of the
piecewise polynomial where in our setup m = 3.

In the following, we describe three significant and repre-
sentative flying scenarios: hovering, take-off and landing with
the associated trajectories.

A. Scenario 1: Hovering

Hovering is modeled by a vertical altitude with zero roll,
pitch, and yaw angles. One can assume that in hovering
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condition, u1 ≈ g in the x and y directions, therefore, (2)
becomes

ẍ = gθ

ÿ = −gφθ
z̈ = u1 − g
ψ̈ = u2

θ̈ = u3

φ̈ = u4. (4)

For this scenario a third order polynomial (cubic-spline) with
two waypoints is considered. More details on hovering can be
found in the next section.

B. Scenario 2: Take-off and Landing

In all kind of UAVs, take-off and landing is important.
The challenge in modeling this scenario is the tuning of the
parameters of the cubic-spline in a way that: (1) the velocity
profiles of the trajectories during take-off and landing are zero
(rest-to-rest maneuver), (2) the absolute value of the velocity is
less than 4m/s, (3) the Euler angles (φ(t), θ(t), ψ(t)) during
take-off and landing are zero (rest-to-rest manoeuvre), and (4)
the UAV reaches the specific altitude z during the flight time.
Clearly, other constraints can be defined. For simplicity, the
surface of the ground is assumed to be horizontal. The length
and duration of the trajectory between take-off and landing can
be made variable. Further details about modeling this scenario
are reported in the next section.

C. Scenario 3: Representative Aggressive Trajectory

The third considered scenario highlights the ability of our
algorithm to model trajectories that comprise obstacle avoid-
ance procedures. Static obstacles with different size can be
defined in the search space. In particular, we consider four
obstacles. Finding a safe and short trajectory in the search
space with obstacles becomes a challenging problem in path
planning. On the other hand, according to the configuration of
our UAV, the feasibility of these trajectories is also significant.

IV. TRAJECTORY REALIZATION AND NUMERICAL
GENERATOR

In this section, firstly, the definition of the trajectory candi-
dates will be given. Then, the constraints of the control inputs
generated by UAV will be discussed. Finally, examples of
realized trajectories are reported.

A. Trajectory Generation

As discussed previously, the trajectory evolution is
F (t) = (x(t), y(t), z(t), φ(t)) with control inputs u(t) =
[u1(t), u2(t), u3(t), u4(t)]

T . Also, the dynamical system
model of a UAV and environmental constraints add mathemat-
ical constraints to the generation of feasible UAV trajectories.

In the following the constraints will be defined. The dynam-
ical system model (2) is a second-order system which means
we have to apply inputs which are algebraically related to
the accelerations. Therefore, our problem is to determine the

TABLE I
SETUP PARAMETERS OF THE QUADROTOR HELICOPTER

Parameters Symbol Value Unit
Mass m 0.65 Kg

Inertia around x axis Ixx 0.07582 Kg •m2

Inertia around y axis Iyy 0.07582 Kg •m2

Inertia around z axis Izz 0.1457924 Kg •m2

Gravitational acceleration g 9.806 m/s2

Lagrange multiplier β 1000 -

optimal coefficients of the piecewise polynomial αji under
particular constraints. The cost function and the boundary
constraints for our scenarios are defined as follows

min
S(t)

[ ∫ t1

t0

S̈2 + ...+

∫ tm

tm−1

S̈2

]
dt

subject to

umin
k ≤ utk ≤ umax

k k = (1, ..., 4). (5)

The constraint in (5) can be defined through a violation
function in the following form:

υuk
= max

(
uk
|ulimit|

− 1, 0

)
, k = (1, ..., 4). (6)

The violation function (6) is used in the following relaxed
optimization problem

min
S(t)

([∫ t1

t0

S̈2 + ...+

∫ tm

tm−1

S̈2

]
dt

)(
1 + β < υuk

>

)
(7)

where < . > is the mean operator and β is the Lagrange
multiplier. See [7] for an elegant extension of (7) to a collision-
free trajectory.

Basically, we propose to solve (7) by combining an evolu-
tionary algorithm to evolve possible trajectory candidates and
third order piecewise polynomials to obtain a specific trajec-
tory given a number of waypoints {(t0, S0), ..., (tm, Sm)} ⊂
R × R in the search space. More in detail each one of the
waypoints is defined with coordinates in the search space,
which are (xw(ti), yw(ti), zw(ti), φw(ti)) i = 0, ...,m and
each of them is generated stochastically as a uniform random
variable ranging between a lower and an upper limit. This
configuration enables a stochastic behaviour of F (t). Finally,
we keep evolving the trajectories by generating waypoints
through the particle swarm optimization (PSO) technique such
that the cost function of the PSO in (7) is minimized to yield
the global best of the particles [10].

B. Numerical Generator

We report a summary of model parameters to be used to
generate trajectories in the three considered scenarios. The
initial parameters are fixed as shown in Table I. Furthermore,
in each representative scenario the start point, end point and
a number of waypoints are defined by the user. The details of
each scenario are given in Section II.
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TABLE II
SETUP PARAMETERS OF THE QUADROTOR HELICOPTER

Scenarios Waypoints Swarm Size Iterations Execution Time (s)
Scenario 1 2 10 30 2.25

Scenario 2 2 10 30 3.21

Scenario 3 3 5 40 4.4587

Fig. 2. Stochastic realization of trajectories for hovering. Red circles show
the position of waypoints.

1) Hovering: Fig. 2 shows a number of realizations of
possible trajectories generated by STGA. The initial and final
position can be chosen by the user. In this specific realization
the initial position of our UAV is Finitial = (0, 0, 0, 0) in
meters. The final position is Ffinal = (0, 0, 8, 0). The third
order polynomial is considered for this scenario.

2) Take-off and landing: In Fig. 3, we report an example of
trajectory belonging to the scenario 2. In particular, the starting

Fig. 3. Stochastic realization of trajectories for take-off and landing.

position is Finitial = (0, 0, 0, 0) and the landing region is
Ffinal = (10, 10, 0, 0). The desired altitude during the flight
is satisfied and the value is 5m. Fig. 4 represents the inertial
frame for the velocity and acceleration components which
for the velocity is less than 4m

s according to our constraint
definition in scenario two and the total flight time is 12s.

Fig. 4. trajectories of velocity and acceleration for take-off and landing.

Fig. 5. Stochastic complex maneuvering trajectories in 3D space.

3) Representative aggressive trajectory: In Fig. 5, the
search space is populated with four generic spherical objects
that acts as obstacles for the UAV and thus hinder their path.
These obstacles can be either positioned arbitrarily by the
user or can be randomly generated by the algorithm. In this
specific case they were generated by the user. A stochastic
realization as a set of trajectories is shown in Fig. 5. The
start point is Finitial = (0, 0, 0, 0) and the end point is
Ffinal = (10, 10, 0, 0). Simulation results for the velocities
and accelerations are shown in Fig. 6. All these trajectories
are feasible and avoid obstacles. Our approach is able to
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generate feasible trajectories also in cluttered environments.
Furthermore, the initial and final velocities and accelerations
are zero (rest to rest maneuver) that is important for take-off
and landing.

Fig. 6. Evolution of velocity and acceleration for aggressive maneuvering.

4) STGA vs CARATE: As already mentioned before, to il-
lustrate the effectiveness of the proposed method, we consider
the baseline CARATE methodology [8] to obtain a path in
3D space. The total time of simulation is 100s. As shown in
Fig. 7 and Fig. 8, the results for the proposed method show
that it generates smooth trajectories and fulfills the constraints.
Despite the ability of CARATE to generate 3D trajectories,
the obtained dynamics are not feasible since for instance the
acceleration is too high. Furthermore, CARATE treats the UAV
as a point mass, therefore it does not allow to fully model the
UAV state evolution.

Fig. 7. STGA vs CARATE [8].
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Fig. 8. Translation of velocities and acceleration for STGA vs CARATE.

V. CONCLUSION

We have proposed a stochastic trajectory generator in the
domain of UAVs that generates representative trajectories fol-
lowed by UAVs. It enables simulation and testing for instance
of state estimation and localization algorithms. The method
allows not only to simulate the position of the UAV but also
it provides the orientation (roll, pitch and yaw) of the UAV.
This is also important when inertial navigation system (INS)
algorithms have to be tested.
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