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Abstract—In modern medicine, combined PET-CT is a commonly-
used tool in clinical diagnostics, which is especially important in
oncology for staging or treatment planning. Variations in FDG uptake
visible in a PET image, which indicate variances in metabolic activity,
are not visually recognizable within a CT scan from the same region,
making both imaging modalities necessary for diagnosis and exposing
the patient to a high amount of radiation. In this study, we investigate
the possibility of using generative adversarial networks (GANs) to
synthesize a PET image from a CT scan to predict metabolic activity.

Index Terms—PET/CT, lung cancer, FDG uptake, machine learning,
GANs

I. INTRODUCTION

The value of using medical imaging techniques like Computed
Tomography (CT) in present-day clinical diagnostic is unambiguous.
When combined with Positron Emission Tomography (PET) [1], CT
becomes an even more powerful diagnostic tool able to visualize both
detailed physiological structures and metabolic activities within a
patient’s body. To have access to both kinds of information is crucial
in the diagnosis of some diseases, especially in the field of oncology.
The basic principle of PET is injecting a positron-emitting tracer into
the patient’s body. Upon decay, the tracer releases positrons which
then annihilate with electrons, creating gamma radiation that can be
measured by the PET detector. The higher the concentration of the
detected gamma particles, the higher the metabolic activity is in a
particular body region.

The majority of clinical PET scans utilizes the radioisotope
fluorine-18 synthesized into fludeoxyglucose (FDG) as tracer. The
PET scanner then detects variations in regional glucose uptake,
which is measured in Standardized Uptake Values (SUV). That way,
ongoing metabolic processes can be localized and quantified. Image
resolution, however, is rather low, making the combination with a CT
or MRI scan necessary to get sufficient physiological information
beyond glucose uptake. In oncology, combined FDG-PET/CT is used
to get information from the glucose uptake regarding location and
size of a tumor and/or metastases and simultaneously receive detailed
information about the patient’s physiology [2]–[4]. An example is
given in Figure 1, where the CT shows anatomic details of the thorax
while the corresponding PET scan can be regarded as a map of the
metabolic activity.

While being a powerful tool in clinical diagnostic, one drawback
of combined PET/CT is the higher amount of radiation a patient is
exposed to. Repeating a PET/CT scan within a short time frame, e.g.
with additional, more specialized tracers, is normally not possible.

Fig. 1: Example of co-registered images from a PET/CT scan of the
thorax. Left: PET image, right: CT scan

Estimating the metabolic activity normally shown on an FDG-PET
image from a CT scan only is hence an interesting, yet challenging
task. While the physiological processes causing variations in CT
attenuation and FDG uptake are different, there are some diagnostic
findings for which the same processes are the underlying cause.
While tumor necrosis results in decreased perfusion, leading to
reduced CT density, it also causes a decrease in FDG uptake, making
CT density a possible surrogate for metabolic activity in this case.
However, finding visual indicators for varying FDG uptake in CT
images is hardly possible.

In a previous study we proposed a feature-based machine learning
approach to locate regions of especially high SUVs within CT images
of lung tumors [5], which is described in section II of this paper. Since
the ultimate goal of our work is to generate detailed PET-like images
and our first approach was not suitable for this task, we decided to
investigate the ability of generative adversarial networks (GANs) [6]
to create a more realistic estimation of variations in FDG uptake
within a tumor from CT input data.

Works in related research fields generally focus on other questions,
e.g. using features derived from PET and CT to distinguish between
benign and malignant structures, not to describe the metabolic activity
within a tumor. For instance, Arimura et al. [7] and Bi et al. [8]
use SVMs trained on features extracted from PET-CT images to
localize regions of high FDG uptake in whole-body scans with
the goal of automatically finding or contouring tumors. A study
by Kerhet et al. [9] proposes to use a classifier trained on PET
image features to predict an optimum SUV threshold for tumor
segmentation. Another popular research area, which actually focuses
on intratumor heterogeneity, is the estimation of treatment success,
i.e. finding links between patient outcome and PET or PET/CT
features derived from regional FDG uptake [10]–[12]. We, in contrast,
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investigate possible relationships between both imaging modalities.
Image-to-imge translation of PET and CT images using deep

learning have been proposed in various studies in the past years.
Most works focus on denoising or dose reduction [13]–[15], but there
have also been some efforts investigating PET synthesis employing
GANs. Ben-Cohen et al. proposed to generate full-body PET images
from CT scans combining a fully convolutional network with a GAN
to improve automated lesion detection on CT scans [16]. Another
study by Bi et al. proposes to use multi-channel GANs to synthesize
FDG-PET images aiming to detect lung tumors [17]. In Contrast,
we are not interested in finding unusually high FDG uptake in a
full-body setup to find tumors, but in investigating the variations in
metabolic activity within regions of high FDG uptake.

II. PREVIOUS WORK

In a previous study, we proposed to use an SVM to classify patched
CT images with labels corresponding to regional glucose uptake of
the co-registered PET images of a PET/CT scan [5].

Although this approach showed promising results, it had some
obvious shortcomings. First of all, we categorized the FDG uptake
in only two classes (high and very high SUVs), which resulted in
an at best coarse representation of the actual textural distribution
within the tumor. Secondly, the labeling strategy only allowed for
very small image patches, resulting in a high number of 261032
patches and corresponding computational complexity. Finally, the
most critical shortcoming of our previous approach was the quite low
overall test accuracy of 76.97% on 29 unseen patients despite the
simplified problem. While visual comparison of the predicted FDG
uptake classes and the original PET images converted to the binary
label representation yielded quite good results for larger tumors, the
classifier was not able to correctly predict FDG uptake in smaller
structures. Experiments using more than 2 intensity classes resulted
in significantly worse performance. To overcome these issues, we
decided to abandon the feature-based approaches and small image
patches for now and started investigating deep learning techniques.

III. PROPOSED METHOD

The general idea of the approach is based on image-to-image
translation, i.e. generating one type of image from another (e.g.
photograph from sketch). We propose to employ a generative
adversarial network (GAN) to generate PET-like images from the
CT scans of lung tumors to avoid the need for explicitly extracted
image features and class labels.

A. Conditional generative adversarial network

Our proposed approach is based on pix2pix [18], a particularly
popular GAN architecture for image-to-image translation tasks
proposed by Isola et al. in 2016. It is a conditional GAN, i.e. rather
than learning the mapping of random noise z to output image y,
the model is given an input image x as additional input and trained
to map x and z to y. The generator G is hence trained to generate
images as similar to the target y as possible while the objective of the
discriminatorD is to detect the fake images generated byG correctly.
The training objective can be formulated as min

G
max
D
LGAN with

the adversarial loss

LGAN = Ex,y [logD(x, y)] + Ex,z [log (1−D (x,G(x, z)))] .

TABLE I: SSIM, MSE and PSNR of validation images after train-
ing the GAN with all CT/PET images and differently preprocessed
input images: no preprocessing (NP), CLAHE, histogram matching
(HM) and Gaussian blurring (GB).

NP CLAHE CLAHE+HM CLAHE+HM+GB

SSIM 0.3510 0.3815 0.4833 0.4470

MSE 1.1410 1.1022 0.7473 0.7107

PSNR 14.1778 14.4273 17.6506 17.5422

Since the generator needs to not only produce output the dicrim-
inator is unable to distinguish from real images, but which is also
close to the ground truth, an additional L1 loss is introduced:

LL1 = Ex,y,z [‖y − logG(x, z)‖1] ,
leading to overall training objective

G∗ = arg min
G

max
D
LGAN + λLL1,

where λ is a parameter to weight the L1 loss.

B. Image preprocessing

Initial attemtps of training the GAN showed poor results. The
structural similarity index (SSIM) between the generated PET images
and the ground truth PET images had a mean value of 0.35, the
calculated mean peak signal-to-noise ratio was 14.1778. As already
discussed, a direct connection between PET and CT depends on the
presence of physiological processes affecting both modalities. This
means estimating a PET image from a CT may not be possible in
each tumor. Hence, we started analyzing our data set for possible
visual connections between CT and PET to see which images might
be better suited for training the GAN than others. Such connections
are, however, not necessarily directly visible in the CT without
enhancing textural variations first. To this end, we employed various
preprocessing techniques.

We used contrast-limited adaptive histogram equalization
(CLAHE) [19] to enhance the contrast of the CT images and
additionally matched the histogram of the CT images to that of
the corresponding PET (HM) to increase performance. However, the
contrast enhancement accentuated tiny textural variations in the CT
which are not present in the smoother PET limiting the ability of the
GAN to correctly learn a relationship between input and target. This
assumption was supported by the finding that smaller tumors, which
did not have as many textural variations in the CT, could be estimated
better than larger ones. Thus, we limited the detailed variations in the
CT images by applying Gaussian blurring (GB).

IV. EXPERIMENTS AND RESULTS

A. Data set and experimental setup

For our experiments, we used 3D FDG-PET/CT images of
202 patients with non-small cell lung cancer. All images were
acquired on a clinical PET/CT scanner (Siemens Biograph mCT).
An experienced radiologist manually segmented the primary lung
tumor to define the volumes of interest (VOIs). Segmentation was
performed on the CT images. Since the GAN needs images to be
perfectly aligned pairwise, we used re-sampling and interpolation to
achieve the same resolution in x, y and z direction for PET, CT and
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TABLE II: PSNR and MSE of validation images after training the GAN with training sets composed with different thresholds s. For the
varying s (column A), training was conducted with an augmented training set (AUG). As preprocessing, a combination of CLAHE + HM +
GB (in the following denoted as COMB) was used. TA denotes results of validation on all available validation data, TS on validation data
selected with respect to s. Columns B and C show notable exemplary results of experiments without data augmentation (B) and with other
preprocessing (C).

A B C

s = 0 s = 0.5, AUG s = 0.6, AUG s = 0.7, AUG s = 0.7 s = 0.7, AUG, CLAHE+GB

PSNR, TS 17.5422 20.4661 21.2475 23.6733 21.7307 18.0713

PSNR, TA – 18.4465 17.8969 18.0448 17.2061 13.1140

MSE, TS 0.7107 0.5928 0.6315 0.7928 1.0566 0.5468

the segmentation masks. As input data, we only used the segmented
tumor regions, amounting to a total number of 3575 2D images.

We used 173 patients for training, the remaining 29 were saved for
validation. We explicitly used the same validation patients as in our
SVM study to be able to compare the results. The baseline pix2pix
architecture employs ADAM optimizer. For the learning rate we
found 0.0002 to give the best results for our task. Additionally, we
adapted the baseline model to train the generator and discriminator
in a 1:3 ratio. Each model was then trained for 100 epochs on a GPU,
since more epochs did not improve results during early analyses.

For each experiment, we calculated the mean structural similarity
index (SSIM), mean mean square error (MSE) and mean peak signal-
to-noise ratio (PSNR) between the generated images and the target
PET images in the validation set. We only evaluated similarity within
the tumor region. In addition to these quantitative measures, visual
resemblance between the GAN output and the target PET images
gives also a qualitative feeling about the quality of the synthesized
PET images. Overall, we found PSNR to be the best of the 3
calculated metrics as surrogate for visual resemblance.

We investigated the ability of the GAN to generate realistic
PET images from the input CT scans depending on the various
preprocessing steps. As previously mentioned, we assume that a
certain relationship between the structure of the input images and
the targets needs to exist in order for a GAN to be able to generate
realistic images. As an indicator for the presence of such a connection,
we calculated the SSIM between the ROIs of the preprocessed CT
images and the corresponding PET scans and used only images with
an SSIM over a pre-defined threshold s for training. We conducted
several analyses with different values for s. Since the training data
did not include enough images of sufficiently high visual connection
for some values of s to still be able to properly train the GAN,
we employed data augmentation in such cases (rotation, stretching,
translation). The results shown in the following were achieved when
using COMB for image preprocessing. Using other combinations of
preprocessing techniques led to lower performance.

B. Results of PET prediction

Table I shows the resulting SSIM, MSE and PSNR of the
validation set for training with images with and without preprocessing.
The numbers clearly indicate the importance of these preprocessing
steps for the GAN to be able to correctly learn to generate PET
images from CT. We thoroughly tested all possible combinations of
the applied preprocessing, in Table I we listed the ones that worked

best in our experiments. Although SSIM and MSE are lower for
COMB than for CLAHE+HM while training on all available images,
we got significantly better results for COMB than for any other
combination during our experiments with varying values s.

In Table II, exemplary results of our analyses are shown. As
we found it to correlate best with visual perception of the output
image quality, we focused on PSNR for quantitative evaluation,
MSE is given as additional metric. Although SSIM was behaving
similarly to PSNR in most cases, we chose not to rely on this
measure for quality assessment in our experiments involving varying
s, as an increase in SSIM would be expected when this measure
is used for dataset selection. In column A, results for the analyses
we conducted with different values for similarity threshold s are
given. Due to a lack of enough data with higher SSIM, we only
conducted analyses up to s = 0.7. For increasing values of s, PSNR
improves, indicating that a sufficient given connection between input
CT and target PET enhances the performance of the GAN. Column
B highlights the importance of data augmentation. For training
with images with SSIM> 0.7 without augmenting the training set,
PSNR is significantly lower, results for other values of s confirmed
this finding. The numbers in column C clarify the importance of
the combined preprocessing. We chose CLAHE+GB as example
because it additionally shows, why MSE should not be used as
a measure for output quality. While we achieved the best values
for MSE in all our experiments involving training on images with
CLAHE+GB, all other measures and visual resemblance between
output and target image deteriorated significantly. In general, we
found that MSE does not reflect visual resemblance well in our case.

Figure 2 further encourages the conclusions drawn from the
calculated results. The output images of training with preprocessed
images in column (c) mostly have a stronger resemblance to the real
PET images in column (a) than the images the GAN generated from
CT images without any preprocessing (b). However, they are not as
similar to the target as the images in column (d), where only training
data with SSIM > 0.7 was used. The results in Table II support this
perception: for training on data with SSIM > 0.7, PSNR was not
only higher when validating on data selected accordingly (PSNR,
TS), but there was also an improvement when validating the trained
model on all available data (PSNR, TA). Artifacts present in the
generated images in (d) are due to the lack of a sufficient amount
of training data. However, augmenting the training data too much
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(a) target PET image (b) output NP (c) output COMB (d) output COMB, s = 0.7, AUG

Fig. 2: Examples of images the GAN was able to generate well from the CT images. The far left column shows the target PET image (a), the
middle columns the output for training without first applying preprocessing (b) and with the most successful combination of all proposed
preprocessing steps (c). In the column on the far right, the results for augmented training data with all preprocessing with a similarity over
s = 0.7 are shown (d).

resulted in decreased GAN perfomance, probably due to overfitting.
Figure 3 shows examples where the GAN was not able to

synthesize a realistic PET, even when training on images with a
similarity over s = 0.7. Some parts of the predicted images even
look reversed compared to the target.

V. DISCUSSION

Our experiments showed that at least under the proper circum-
stances, i.e. when suitable training data is available, it is possible
to predict metabolic activity within a tumor from a CT scan. We
achieved good resemblance between output and target when the
GAN was trained with images where a visual connection between
PET and CT images was already present, e.g. originating from tumor
necrosis leading to decreased perfusion in the CT and decreased
glucose uptake in the PET. However, our approach has limitations
as GAN performance is strongly dependent on the underlying
physiological/biological conditions. We used image similarity as
a simple approach to test our hypothesis that, in order to be able to
solve the task, the GAN needs data with a relationship between input
and target images. It hence is crucial to first find a way to determine

wether or not a CT image of a tumor is suitable without needing
to compare it to a PET image first before this could be used in a
real-world application.

Overall, our previous approach and our goal in this study are two
completely different tasks, making a fair comparison difficult. The
SVM was trained for a binary classification between high and very
high SUVs, giving only a coarse representation of the structure within
the tumor. The GAN was trained to synthesize realistic images, which
is a much more complicated task. However, one major issue we
experienced with our SVM approach was the fact that the classifier
was not able to correctly identify regions of high FDG uptake in
smaller ROIs. A particularly interesting result of this study is that
the GAN behaves the opposite way: most of the smaller tumors in
our validation set are generated more accurately than the larger ones.
The reason for this finding might be that smaller tumors tend to
have less chaotic textural variations than some of the bigger tumors,
making it harder for the GAN to generate realistic images. The
feature-based SVM, in contrast, would benefit from a more diverse
textural information.

While the proposed approach using GANs has been able to
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(a) target PET image (b) output NP (c) output COMB (d) output COMB, s = 0.7, AUG

Fig. 3: Examples of bad results for the same training as for the images in Figure 2.

overcome some of the shortcomings of the previous feature-based
method (i.e. problems with small ROIs, only simplified SUV
representation), there are still some issues that need to be addressed
in future studies. Special focus should be on the analysis of biological
and physiological conditions of the data to get a better understanding
about which images of tumors are suitable for prediction of FDG
uptake from CT images and which are not. With this knowledge, a
classifier could be trained to determine whether or not the PET of
a tumor can be synthesized from a CT scan. Additionally, we aim
to investigate other GAN architectures more specialized on medical
image-to-image translation to hopefully increase performance. Simul-
taneously, we plan experiments with other deep learning techniques
(e.g. convolutional neural networks) and also to try combining our
feature-based approach with deep learning by investigating hybrid
feature learning.

VI. CONCLUSION

In this study, we presented an approach to estimate metabolic
activity within a tumor by training a GAN to generate PET-like
images from CT input. We found that, while the GAN performed
well for part of the input images, the ability to create realistic PET
images strongly depends on the available data. From our results, we
conclude that predicting FDG uptake in tumors is indeed possible
for certain cases, but only if an underlying physiological process
influencing both PET and CT imaging is present in the data.
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